|   | 
Details
   web
Records
Author Albaladejo, M.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Nieves, J.; Nogga, A.; Yang, Z.
Title Note on X(3872) production at hadron colliders and its molecular structure Type Journal Article
Year 2017 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 41 Issue 12 Pages 121001 - 3pp
Keywords X(3872); hadronic molecules; exotic hadrons
Abstract The production of the X (3872) as a hadronic molecule in hadron colliders is clarified. We show that the conclusion of Bignamini et al., Phys. Rev. Lett. 103 (2009) 162001, that the production of the X(3872) at high pT implies a non-molecular structure, does not hold. In particular, using the well understood properties of the deuteron wave function as an example, we identify the relevant scales in the production process.
Address [Albaladejo, Miguel] Univ Murcia, Dept Fis, E-30071 Murcia, Spain
Corporate Author Thesis
Publisher Chinese Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000417112000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3397
Permanent link to this record
 

 
Author Albaladejo, M.; Bibrzycki, L.; Dawid, S.M.; Fernandez-Ramirez, C.; Gonzalez-Solis, S.; Hiller Blin, A.N.; Jackura, A.W.; Mathieu, V.; Mikhasenko, M.; Make, V.I.; Passemar, E.; Pilloni, A.; Rodas, A.; Silva-Castro, J.A.; Smith, W.A.; Szczepaniak, A.P.; Winney, D.
Title Novel approaches in hadron spectroscopy Type Journal Article
Year 2022 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.
Volume 127 Issue Pages 103981 - 75pp
Keywords Hadron spectroscopy; Exotic hadrons; Three-body scattering; Resonance production
Abstract The last two decades have witnessed the discovery of a myriad of new and unexpected hadrons. The future holds more surprises for us, thanks to new-generation experiments. Understanding the signals and determining the properties of the states requires a parallel theoretical effort. To make full use of available and forthcoming data, a careful amplitude modeling is required, together with a sound treatment of the statistical uncertainties, and a systematic survey of the model dependencies. We review the contributions made by the Joint Physics Analysis Center to the field of hadron spectroscopy.
Address [Albaladejo, Miguel; Blin, Astrid N. Hiller; Jackura, Andrew W.; Mokeev, Victor, I; Passemar, Emilie; Rodas, Arkaitz; Szczepaniak, Adam P.] Thomas Jefferson Natl Accelerator Facil, Theory Ctr & Phys Div, Newport News, VA 23606 USA, Email: alessandro.pilloni@unime.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 0146-6410 ISBN Medium
Area Expedition Conference
Notes WOS:000883770300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5422
Permanent link to this record
 

 
Author Ji, T.; Dong, X.K.; Albaladejo, M.; Du, M.L.; Guo, F.K.; Nieves, J.; Zou, B.S.
Title Understanding the 0(++) and 2(++) charmonium(-like) states near 3.9 GeV Type Journal Article
Year 2023 Publication Science Bulletin Abbreviated Journal Sci. Bull.
Volume 68 Issue 7 Pages 688-697
Keywords Charmonium(-like) states; Hadronic molecules; Heavy quark spin symmetry; Exotic hadrons; Hadron-hadron interactions
Abstract We propose that the X(3915) observed in the J/psi x channel is the same state as the chi(c2)(3930), and the X(3960), observed in the Ds+Ds- channel, is an S-wave Ds+Ds- hadronic molecule. In addition, the J(PC) = 0(++) component in the B+ -> D+D-K+ assigned to the X(3915) in the current Review of Particle Physics has the same origin as the X(3960), which has a mass around 3.94 GeV. To check the proposal, the available data in the D (D) over bar and Ds+Ds- channels from both B decays and gamma gamma fusion reaction are analyzed considering both the D (D) over bar -D-s(D) over bar (s)-D*(D) over bar*-D-s*(D) over bar (s)* coupled channels with 0(++) and a 2(++) state introduced additionally. It is found that all the data in different processes can be simultaneously well reproduced, and the coupled-channel dynamics produce four hidden-charm scalar molecular states with masses around 3.73, 3.94, 3.99 and 4.23 GeV, respectively. The results may deepen our understanding of the spectrum of charmonia as well as of the interactions between charmed hadrons.
Address [Ji, Teng; Dong, Xiang-Kun; Guo, Feng-Kun; Zou, Bing-Song] Inst Theoret Phys, Chinese Acad Sci, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China, Email: jiteng@itp.ac.cn;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (up) Edition
ISSN 2095-9273 ISBN Medium
Area Expedition Conference
Notes WOS:000985290600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5520
Permanent link to this record