toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Doncel, M.; Cederwall, B.; Gadea, A.; Gerl, J.; Kojouharov, I.; Martin, S.; Palit, R.; Quintana, B. doi  openurl
  Title Performance and imaging capabilities of the DEGAS high-resolution gamma-ray detector array for the DESPEC experiment at FAIR Type Journal Article
  Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 873 Issue Pages 36-38  
  Keywords Gamma spectroscopy; Imaging; Position-sensitive Ge detectors  
  Abstract Monte Carlo simulations of one of the possible configurations of the imaging phase for the DEGAS spectrometer situated at the DESPEC/NUSTAR experiment have been performed. The geometry consists of the coupling of the high-resolution gamma spectroscopy array, AGATA, with a high-resolution segmented planar detector utilized as an implantation detector in a compact configuration. The sensitivity and performance of the array in terms of efficiency and imaging capability is deduced.  
  Address [Doncel, M.] Univ Liverpool, Dept Phys, Oliver Lodge Lab, Liverpool, Merseyside, England, Email: doncel@liverpool.ac.uk  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413823100008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3349  
Permanent link to this record
 

 
Author NEXT Collaboration (Azevedo, C.D.R. et al); Gomez-Cadenas, J.J.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 877 Issue Pages 157-172  
  Keywords Optical TPCs; Microscopic simulation; Xenon scintillation  
  Abstract We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.  
  Address [Azevedo, C. D. R.] Univ Aveiro, I3N, Phys Dept, Aveiro, Portugal, Email: Diego.Gonzalez.Diaz@usc.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000415128000022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3371  
Permanent link to this record
 

 
Author n_TOF Collaboration (Barbagallo, M. et al); Domingo-Pardo, C.; Tain, J.L. url  doi
openurl 
  Title Experimental setup and procedure for the measurement of the Be-7(n,p)Li-7 reaction at n_TOF Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 887 Issue Pages 27-33  
  Keywords Cosmological Lithium problem; Big bang nucleosynthesis; Be-7(n,p)Li-7 reaction; n_TOF spallation neutron source  
  Abstract Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron induced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-lived radioactive isotopes. After the successful measurement of the Be-7(n,alpha)alpha cross section, the Be-7(n,p)Li-7 reaction was studied in order to provide still missing cross section data of relevance for Big Bang Nucleosynthesis (BBN), in an attempt to find a solution to the cosmological Lithium abundance problem. This paper describes the experimental setup employed in such a measurement and its characterization.  
  Address [Barbagallo, M.; Mastromarco, M.; Damone, L. A.; Mazzone, A.; Colonna, N.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy, Email: finocchiaro@lns.infn.ir  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427814400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3528  
Permanent link to this record
 

 
Author n_TOF Collaboration (Praena, J. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title Preparation and characterization of S-33 samples for S-33(n,alpha)Si-30 cross-section measurements at the n_TOF facility at CERN Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 890 Issue Pages 142-147  
  Keywords Neutron induced alpha emission; Thermal evaporation; Rutherford backscattering  
  Abstract Thin S-33 samples for the study of the S-33(n,alpha)Si-30 cross-section at the n_TOF facility at CERN were made by thermal evaporation of S-33 powder onto a dedicated substrate made of kapton covered with thin layers of copper, chromium and titanium. This method has provided for the first time bare sulfur samples a few centimeters in diameter. The samples have shown an excellent adherence with no mass loss after few years and no sublimation in vacuum at room temperature. The determination of the mass thickness of S-33 has been performed by means of Rutherford backscattering spectrometry. The samples have been successfully tested under neutron irradiation.  
  Address [Praena, J.; Porras, I.] Univ Granada, Granada, Spain, Email: jpraena@ugr.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427814900020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3537  
Permanent link to this record
 

 
Author Luo, X.L. et al; Agramunt, J.; Egea, F.J.; Gadea, A.; Huyuk, T. doi  openurl
  Title Pulse pile-up identification and reconstruction for liquid scintillator based neutron detectors Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 897 Issue Pages 59-65  
  Keywords Pile-up; Digital; First-order derivative; Neutron-gamma discrimination; Liquid scintillator  
  Abstract The issue of pulse pile-up is frequently encountered in nuclear experiments involving high counting rates, which will distort the pulse shapes and the energy spectra. A digital method of off-line processing of pile-up pulses is presented. The pile-up pulses were firstly identified by detecting the downward-going zero-crossings in the first-order derivative of the original signal, and then the constituent pulses were reconstructed based on comparing the pile-up pulse with four models that are generated by combining pairs of neutron and.. standard pulses together with a controllable time interval. The accuracy of this method in resolving the pile-up events was investigated as a function of the time interval between two pulses constituting a pile-up event. The obtained results show that the method is capable of disentangling two pulses with a time interval among them down to 20 ns, as well as classifying them as neutrons or gamma rays. Furthermore, the error of reconstructing pile-up pulses could be kept below 6% when successive peaks were separated by more than 50 ns. By applying the method in a high counting rate of pile-up events measurement of the NEutron Detector Array (NEDA), it was empirically found that this method can reconstruct the pile-up pulses and perform neutron-gamma discrimination quite accurately. It can also significantly correct the distorted pulse height spectrum due to pile-up events.  
  Address [Luo, X. L.] Acad Mil Med Sci, Natl Innovat Inst Def Technol, Beijing 100010, Peoples R China, Email: delongtmac@163.com  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000433206800010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3591  
Permanent link to this record
 

 
Author NEXT Collaboration (Trindade, A.M.F. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Simon, A.; Sorel, M.; Torrent, J.; Yahlali, N. doi  openurl
  Title Study of the loss of xenon scintillation in xenon-trimethylamine mixtures Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 905 Issue Pages 22-28  
  Keywords Gaseous radiation detectors; Noble gas mixtures; Molecular additives; VUV absorption  
  Abstract This work investigates the capability of TMA ((CH3)(3)N) molecules to shift the wavelength of Xe VUV emission (160-188 nm) to a longer, more manageable, wavelength (260-350 nm). Light emitted from a Xe lamp was passed through a gas chamber filled with Xe-TMA mixtures at 800 Torr and detected with a photomultiplier tube. Using bandpass filters in the proper transmission ranges, no reemitted light was observed experimentally. Considering the detection limit of the experimental system, if reemission by TMA molecules occurs, it is below 0.3% of the scintillation absorbed in the 160-188 nm range. An absorption coefficient value for xenon VUV light by TMA of 0.43 +/- 0.03 cm(-1) Torr(-1) was also obtained. These results can be especially important for experiments considering TMA as a molecular additive to Xe in large volume optical time projection chambers.  
  Address [Trindade, A. M. F.; Escada, J.; Cortez, A. F., V; Borges, F. I. G. M.; Santos, F. P.; Conde, C. A. N.] LIP Lab Instrumentacao & Fis Expt Particulas, Coimbra, Portugal, Email: Kalexandre.trindade@coimbra.lip.pt  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000444425700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3730  
Permanent link to this record
 

 
Author NEXT Collaboration (Felkai, R. et al); Sorel, M.; Lopez-March, N.; Gomez-Cadenas, J.J.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Ferrario, P.; Laing, A.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Romo-Luque, C.; Rodriguez, J.; Simon, A.; Torrent, J.; Yahlali, N. url  doi
openurl 
  Title Helium-Xenon mixtures to improve the topological signature in high pressure gas xenon TPCs Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 905 Issue Pages 82-90  
  Keywords Helium; Xenon; Double-beta decay; TPC; Low diffusion; Electroluminescence  
  Abstract Within the framework of xenon-based double beta decay experiments, we propose the possibility to improve the background rejection of an electroluminescent Time Projection Chamber (EL TPC) by reducing the diffusion of the drifting electrons while keeping nearly intact the energy resolution of a pure xenon EL TPC. Based on state-of-the-art microscopic simulations, a substantial addition of helium, around 10 or 15 %, may reduce drastically the transverse diffusion down to 2.5 mm/root m from the 10.5 mm/root m of pure xenon. The longitudinal diffusion remains around 4 mm/root m. Light production studies have been performed as well. They show that the relative variation in energy resolution introduced by such a change does not exceed a few percent, which leaves the energy resolution practically unchanged. The technical caveats of using photomultipliers close to an helium atmosphere are also discussed in detail.  
  Address [Adams, C.; Guenette, R.; Martin-Albo, J.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: francesc.monrabalcapilla@uta.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000444425700010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3731  
Permanent link to this record
 

 
Author Brook, N.H.; Castillo Garcia, L.; Conneely, T.M.; Cussans, D.; van Dijk, M.W.U.; Fohl, K.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Hancock, T.H.; Harnew, N.; Lapington, J.; Milnes, J.; Piedigrossi, D.; Rademacker, J.; Ros Garcia, A. url  doi
openurl 
  Title Testbeam studies of a TORCH prototype detector Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 908 Issue Pages 256-268  
  Keywords Cherenkov radiation; Particle identification; TORCH; MCP-PMT  
  Abstract TORCH is a novel time-of-flight detector that has been developed to provide charged-particle identification between 2 and 10 GeV/c momentum. TORCH combines arrival times from multiple Cherenkov photons produced within a 10 mm-thick quartz radiator plate, to achieve a 15 ps time-of-flight resolution per incident particle. A customised Micro-Channel Plate photomultiplier tube (MCP-PMT) and associated readout system utilises an innovative charge-sharing technique between adjacent pixels to obtain the necessary 70 ps time resolution of each Cherenkov photon. A five-year R&D programme has been undertaken, culminating in the construction of a small-scale prototype TORCH module. In testbeams at CERN, this prototype operated successfully with customised electronics and readout system. A full analysis chain has been developed to reconstruct the data and to calibrate the detector. Results are compared to those using a commercial Planacon MCP-PMT, and single photon resolutions approaching 80 ps have been achieved. The photon counting efficiency was found to be in reasonable agreement with a GEANT4 Monte Carlo simulation of the detector. The small-scale demonstrator is a precursor to a full-scale TORCH module (with a radiator plate of 660 x 1250 x 10 mm(3)), which is currently under construction.  
  Address [Brook, N. H.; Cussans, D.; Garcia, A. Ros] Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England, Email: mvandijk@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446864600033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3760  
Permanent link to this record
 

 
Author Rasco, B.C.; Brewer, N.T.; Yokoyama, R.; Grzywacz, R.; Rykaczewski, K.P.; Tolosa-Delgado, A.; Agramunt, J.; Tain, J.L.; Algora, A.; Hall, O.; Griffin, C.; Davinson, T.; Phong, V.H.; Liu, J.; Nishimura, S.; Kiss, G.G.; Nepal, N.; Estrade, A. url  doi
openurl 
  Title The ORNL analysis technique for extracting beta-delayed multi-neutron branching ratios with BRIKEN Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 911 Issue Pages 79-86  
  Keywords Neutron detectors; Multi-neutron emission data analysis  
  Abstract Many choices are available in order to evaluate large radioactive decay networks. There are many parameters that influence the calculated beta-decay delayed single and multi-neutron emission branching fractions. We describe assumptions about the decay model, background, and other parameters and their influence on beta-decay delayed multi-neutron emission analysis. An analysis technique, the ORNL BRIKEN analysis procedure, for determining beta-delayed multi-neutron branching ratios in beta-neutron precursors produced by means of heavy-ion fragmentation is presented. The technique is based on estimating the initial activities of zero, one, and two neutrons occurring in coincidence with an ion-implant and beta trigger. The technique allows one to extract beta-delayed multi-neutron decay branching ratios measured with the He-3 BRIKEN neutron counter. As an example, two analyses of the beta-neutron emitter Cu-77 based on different a priori assumptions are presented along with comparisons to literature values.  
  Address [Rasco, B. C.; Brewer, N. T.; Rykaczewski, K. P.] Oak Ridge Natl Lab, Phys Div, Oak Ridge, TN 37831 USA, Email: brasco@utk.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000450880200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3813  
Permanent link to this record
 

 
Author Guadilla, V. et al; Tain, J.L.; Algora, A.; Agramunt, J.; Gelletly, W.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S.E.A.; Rubio, B.; Valencia, E. url  doi
openurl 
  Title Characterization and performance of the DTAS detector Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 910 Issue Pages 79-89  
  Keywords beta decay; Total absorption gamma-ray spectrometer; Exotic nuclei; NaI(Tl) detector; Non-proportional scintillation light yield; Monte Carlo simulations  
  Abstract DTAS is a segmented total absorption y-ray spectrometer developed for the DESPEC experiment at FAIR. It is composed of up to eighteen NaI(Tl) crystals. In this work we study the performance of this detector with laboratory sources and also under real experimental conditions. We present a procedure to reconstruct offline the sum of the energy deposited in all the crystals of the spectrometer, which is complicated by the effect of NaI(Tl) light-yield non-proportionality. The use of a system to correct for time variations of the gain in individual detector modules, based on a light pulse generator, is demonstrated. We describe also an event-based method to evaluate the summing-pileup electronic distortion in segmented spectrometers. All of this allows a careful characterization of the detector with Monte Carlo simulations that is needed to calculate the response function for the analysis of total absorption gamma-ray spectroscopy data. Special attention was paid to the interaction of neutrons with the spectrometer, since they are a source of contamination in studies of beta-delayed neutron emitting nuclei.  
  Address [Guadilla, V; Tain, J. L.; Algora, A.; Agramunt, J.; Gelletly, W.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] CSIC Univ Valencia, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: guadilla@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000453652500010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3847  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva