toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Buchta, S.; Chachamis, G.; Draggiotis, P.; Malamos, I.; Rodrigo, G. url  doi
openurl 
  Title On the singular behaviour of scattering amplitudes in quantum field theory Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 014 - 13pp  
  Keywords QCD Phenomenology; NLO Computations  
  Abstract We analyse the singular behaviour of one-loop integrals and scattering amplitudes in the framework of the loop-tree duality approach. We show that there is a partial cancellation of singularities at the loop integrand level among the different components of the corresponding dual representation that can be interpreted in terms of causality. The remaining threshold and infrared singularities are restricted to a finite region of the loop momentum space, which is of the size of the external momenta and can be mapped to the phase-space of real corrections to cancel the soft and collinear divergences.  
  Address [Buchta, Sebastian; Chachamis, Grigorios; Malamos, Ioannis; Rodrigo, German] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: sbuchta@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344788000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2065  
Permanent link to this record
 

 
Author Sborlini, G.F.R.; de Florian, D.; Rodrigo, G. url  doi
openurl 
  Title Triple collinear splitting functions at NLO for scattering processes with photons Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 161 - 29pp  
  Keywords NLO Computations  
  Abstract We present splitting functions in the triple collinear limit at next-to-leading order. The computation was performed in the context of massless QCD+QED, considering only processes which include at least one photon. Through the comparison of the IR divergent structure of splitting amplitudes with the expected known behavior, we were able to check our results. Besides that we implemented some consistency checks based on symmetry arguments and cross-checked the results among them. Studying photon-started processes, we obtained very compact results.  
  Address [Sborlini, German F. R.; de Florian, Daniel] Univ Buenos Aires, FCEyN, Dept Fis, RA-1428 Buenos Aires, DF, Argentina, Email: gfsborlini@df.uba.ar;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347905900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2082  
Permanent link to this record
 

 
Author Sborlini, G.F.R.; de Florian, D.; Rodrigo, G. url  doi
openurl 
  Title Polarized triple-collinear splitting functions at NLO for processes with photons Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 021 - 30pp  
  Keywords NLO Computations  
  Abstract We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling alpha(S), for the splitting processes gamma -> qq gamma, gamma -> qqg and g -> qq gamma. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani's formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR).  
  Address [Sborlini, German F. R.; de Florian, Daniel] Univ Buenos Aires, FCEyN, Dept Fis, RA-1428 Buenos Aires, DF, Argentina, Email: gfsborlini@df.uba.ar;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000351363800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2169  
Permanent link to this record
 

 
Author Chachamis, G.; Deak, M.; Hentschinski, M.; Rodrigo, G.; Sabio Vera, A. url  doi
openurl 
  Title Single bottom quark production in kT-factorisation Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 123 - 17pp  
  Keywords QCD Phenomenology; NLO Computations  
  Abstract We present a study within the k(T)-factorisation scheme on single bottom quark production at the LHC. In particular, we calculate the rapidity and transverse momentum differential distributions for single bottom quark/anti-quark production. In our setup, the unintegrated gluon density is obtained from the NLx BFKL Green function whereas we included mass effects to the Lx heavy quark jet vertex. We compare our results to the corresponding distributions predicted by the usual collinear factorisation scheme. The latter were produced with Pythia 8.1.  
  Address [Chachamis, Grigorios; Sabio Vera, Agustin] Univ Autonoma Madrid, E-28049 Madrid, Spain, Email: grigorios.chachamis@csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000361753300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2614  
Permanent link to this record
 

 
Author Hernandez-Pinto, R.J.; Sborlini, G.F.R.; Rodrigo, G. url  doi
openurl 
  Title Towards gauge theories in four dimensions Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 044 - 14pp  
  Keywords NLO Computations  
  Abstract The abundance of infrared singularities in gauge theories due to unresolved emission of massless particles (soft and collinear) represents the main difficulty in perturbative calculations. They are typically regularized in dimensional regularization, and their subtraction is usually achieved independently for virtual and real corrections. In this paper, we introduce a new method based on the loop-tree duality (LTD) theorem to accomplish the summation over degenerate infrared states directly at the integrand level such that the cancellation of the infrared divergences is achieved simultaneously, and apply it to reference examples as a proof of concept. Ultraviolet divergences, which are the consequence of the point-like nature of the theory, are also reinterpreted physically in this framework. The proposed method opens the intriguing possibility of carrying out purely four-dimensional implementations of higher-order perturbative calculations at next-to-leading order (NLO) and beyond free of soft and final-state collinear subtractions.  
  Address [Hernandez-Pinto, Roger J.; Sborlini, German F. R.; Rodrigo, German] Univ Valencia, Inst Fis Corpuscular, Consejo Super Invest Cient, Pare Cient, E-46980 Valencia, Spain, Email: rogerjose.hernandez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000375270700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2661  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva