toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Buchta, S.; Chachamis, G.; Draggiotis, P.; Malamos, I.; Rodrigo, G. url  doi
openurl 
  Title On the singular behaviour of scattering amplitudes in quantum field theory Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 014 - 13pp  
  Keywords QCD Phenomenology; NLO Computations  
  Abstract We analyse the singular behaviour of one-loop integrals and scattering amplitudes in the framework of the loop-tree duality approach. We show that there is a partial cancellation of singularities at the loop integrand level among the different components of the corresponding dual representation that can be interpreted in terms of causality. The remaining threshold and infrared singularities are restricted to a finite region of the loop momentum space, which is of the size of the external momenta and can be mapped to the phase-space of real corrections to cancel the soft and collinear divergences.  
  Address [Buchta, Sebastian; Chachamis, Grigorios; Malamos, Ioannis; Rodrigo, German] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: sbuchta@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344788000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 2065  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Observation of B-s(0) -> K* (+/-) K -/+ and evidence for B-s(0) -> K*(-) pi(+) decays Type Journal Article
  Year 2014 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 16 Issue Pages 123001 - 18pp  
  Keywords flavour physics; B physics; branching fraction  
  Abstract Measurements of the branching fractions of B-s(0) -> K*K-+/-(-/+) and B-s(0) -> K*(+/-) pi(-/+) decays are performed using a data sample corresponding to 1.0 fb(-1) of protonproton collision data collected with the LHCb detector at a centre-of- mass energy of 7 TeV, where the K*(+/-) mesons are reconstructed in the K-s(0) pi(+/-) final state. The first observation of the B-s(0) -> K*(+/-) K--/+ decay and the first evidence for the B-s(0) -> K*(-) pi(+) decay are reported with branching fractions B(B-s(0) -> K*K-+/-(-/+)) = (12.7 +/- 1.9 +/- 1.9) x 10(-6) , B(B-s(0) -> K*(-) pi(+)) = (3.3 +/- 1.1 +/- 0.5) x 10(-6) , where the first uncertainties are statistical and the second are systematic. In addition, an upper limit of B(B-0 -> K*K-+/-(-/+)) < 0.4 (0.5) x 10(-6) is set at 90% (95%) confidence level.  
  Address [Amato, S.; Akiba, K. Carvalho; De Paula, L.; Francisco, O.; Gandelman, M.; Lopes, J. H.; Tostes, D. Martins; Otalora Goicochea, J. M.; Polycarpo, E.; Rangel, M. S.; Guimaraes, V. Salustino; De Paula, B. Souza; Szilard, D.; Vieira, D.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000346821400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 2064  
Permanent link to this record
 

 
Author Cabrera, M.E.; Casas, A.; Ruiz de Austri, R.; Bertone, G. url  doi
openurl 
  Title LHC and dark matter phenomenology of the NUGHM Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 114 - 39pp  
  Keywords Supersymmetry Phenomenology  
  Abstract We present a Bayesian analysis of the NUGHM, a supersymmetric scenario with non-universal gaugino masses and Higgs masses, including all the relevant experimental observables and dark matter constraints. The main merit of the NUGHM is that it essentially includes all the possibilities for dark matter (DM) candidates within the MSSM, since the neutralino and chargino spectrum -and composition- are as free as they can be in the general MSSM. We identify the most probable regions in the NUHGM parameter space, and study the associated phenomenology at the LHC and the prospects for DM direct detection. Requiring that the neutralino makes all of the DM in the Universe, we identify two preferred regions around m(chi 10) = 1 TeV, 3 TeV, which correspond to the (almost) pure Higgsino and wino case. There exist other marginal regions (e.g. Higgs-funnel), but with much less statistical weight. The prospects for detection at the LHC in this case are quite pessimistic, but future direct detection experiments like LUX and XENON1T, will be able to probe this scenario. In contrast, when allowing other DM components, the prospects for detection at the LHC become more encouraging – the most promising signals being, beside the production of gluinos and squarks, the production of the heavier chargino and neutralino states, which lead to WZ and same-sign WW final states – and direct detection remains a complementary, and even more powerful, way to probe the scenario.  
  Address [Cabrera, Maria Eugenia; Bertone, Gianfranco] Univ Amsterdam, Inst Theoret Phys, GRAPPA, NL-1018 XE Amsterdam, Netherlands, Email: mcabrera@if.usp.br;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000346771200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 2063  
Permanent link to this record
 

 
Author Lattanzi, M.; Lineros, R.A.; Taoso, M. url  doi
openurl 
  Title Connecting neutrino physics with dark matter Type Journal Article
  Year 2014 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 16 Issue Pages 125012 - 19pp  
  Keywords neutrinos; dark matter; flavour; majoron; sterile neutrinos  
  Abstract The origin of neutrino masses and the nature of dark matter are two in most pressing open questions in modern astro-particle physics. We consider here the possibility that these two problems are related, and review some theoretical scenarios which offer common solutions. A simple possibility is that the dark matter particle emerges in minimal realizations of the seesaw mechanism, as in the majoron and sterile neutrino scenarios. We present the theoretical motivation for both models and discuss their phenomenology, confronting the predictions of these scenarios with cosmological and astrophysical observations. Finally, we discuss the possibility that the stability of dark matter originates from a flavor symmetry of the leptonic sector. We review a proposal based on an A(4) flavor symmetry.  
  Address [Lattanzi, Massimiliano] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy, Email: lattanzi@fe.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000346823200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 2062  
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P11006 - 20pp  
  Keywords Cherenkov detectors; Cherenkov and transition radiation; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Dark Matter detectors (WIMPs, axions, etc.)  
  Abstract XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2.10(47) cm(2) for WIMP masses around 50 GeV/c(2), which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of similar to 10m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (> 99.5%) and showers of secondary particles from muon interactions in the rock (> 70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.  
  Address [Aprile, E.; Contreras, H.; Goetzke, L. W.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: dr.serena.fattori@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345026000020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 2061  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva