toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Andreotti, M. et al; Cervera-Villanueva, A.; Garcia-Peris, M. a.; Martin-Albo, J.; Querol, M.; Rocabado, J.; Saadana, A. doi  openurl
  Title Cryogenic characterization of Hamamatsu HWB MPPCs for the DUNE photon detection system Type Journal Article
  Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 19 Issue 1 Pages T01007 - 27pp  
  Keywords Cryogenic detectors; Photon detectors for UV, visible and IR photons (solid-state); Photon detectors for UV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc)  
  Abstract The Deep Underground Neutrino Experiment (DUNE) is a next generation experiment aimed to study neutrino oscillation. Its long-baseline configuration will exploit a Near Detector (ND) and a Far Detector (FD) located at a distance of similar to 1300 km. The FD will consist of four Liquid Argon Time Projection Chamber (LAr TPC) modules. A Photon Detection System (PDS) will be used to detect the scintillation light produced inside the detector after neutrino interactions. The PDS will be based on light collectors coupled to Silicon Photomultipliers (SiPMs). Different photosensor technologies have been proposed and produced in order to identify the best samples to fullfill the experiment requirements. In this paper, we present the procedure and results of a validation campaign for the Hole Wire Bonding (HWB) MPPCs samples produced by Hamamatsu Photonics K.K. (HPK) for the DUNE experiment, referring to them as 'SiPMs'. The protocol for a characterization at cryogenic temperature (77 K) is reported. We present the down-selection criteria and the results obtained during the selection campaign undertaken, along with a study of the main sources of noise of the SiPMs including the investigation of a newly observed phenomenon in this field.  
  Address [de Souza, H. Vieira] Univ Paris Cite, Lab Astroparticule & Cosmol, APC, Paris, France, Email: elisabetta.montagna@bo.infn.it  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001178134800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 6072  
Permanent link to this record
 

 
Author NEXT Collaboration (Mistry, K. et al); Carcel, S.; Lopez-March, N.; Martin-Albo, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Soto-Oton, J.; Uson, A. url  doi
openurl 
  Title Design, characterization and installation of the NEXT-100 cathode and electroluminescence regions Type Journal Article
  Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 19 Issue 2 Pages P02007 - 36pp  
  Keywords Detector design and construction technologies and materials; Double-beta decay detectors; Charge transport; multiplication and electroluminescence in rare gases and liquids; Time projection Chambers (TPC)  
  Abstract NEXT -100 is currently being constructed at the Laboratorio Subterraneo de Canfranc in the Spanish Pyrenees and will search for neutrinoless double beta decay using a high-pressure gaseous time projection chamber (TPC) with 100 kg of xenon. Charge amplification is carried out via electroluminescence (EL) which is the process of accelerating electrons in a high electric field region causing secondary scintillation of the medium proportional to the initial charge. The NEXT -100 EL and cathode regions are made from tensioned hexagonal meshes of 1 m diameter. This paper describes the design, characterization, and installation of these parts for NEXT -100. Simulations of the electric field are performed to model the drift and amplification of ionization electrons produced in the detector under various EL region alignments and rotations. Measurements of the electrostatic breakdown voltage in air characterize performance under high voltage conditions and identify breakdown points. The electrostatic deflection of the mesh is quantified and fit to a first -pr inciples mechanical model. Measurements were performed with both a standalone test EL region and with the NEXT-100 EL region before its installation in the detector. Finally, we describe the parts as installed in NEXT-100, following their deployment in Summer 2023.  
  Address [Mistry, K.; Jones, B. J. P.; Munson, B.; Norman, L.; Oliver, D.; Pingulkar, S.; Rodriguez-Tiscareno, M.; Silva, K.; Stogsdill, K.; Byrnes, N.; Dey, E.; Navarro, K. E.; Nygren, D. R.; Parmaksiz, I.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA, Email: next-src@pegaso.ific.uv.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001185791500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 6071  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aikot, A.; Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Saibel, A.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Electron and photon energy calibration with the ATLAS detector using LHC Run 2 data Type Journal Article
  Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 19 Issue 2 Pages P02009 - 58pp  
  Keywords Calorimeter methods; Pattern recognition; cluster finding; calibration and fitting methods; Performance of High Energy Physics Detectors  
  Abstract This paper presents the electron and photon energy calibration obtained with the ATLAS detector using 140 fb-1 of LHC proton -proton collision data recorded at -Js = 13 TeV between 2015 and 2018. Methods for the measurement of electron and photon energies are outlined, along with the current knowledge of the passive material in front of the ATLAS electromagnetic calorimeter. The energy calibration steps are discussed in detail, with emphasis on the improvements introduced in this paper. The absolute energy scale is set using a large sample of Z -boson decays into electron -positron pairs, and its residual dependence on the electron energy is used for the first time to further constrain systematic uncertainties. The achieved calibration uncertainties are typically 0.05% for electrons from resonant Z -boson decays, 0.4% at ET – 10 GeV, and 0.3% at ET – 1 TeV; for photons at ET <^>' 60 GeV, they are 0.2% on average. This is more than twice as precise as the previous calibration. The new energy calibration is validated using .11tfr -, ee and radiative Z -boson decays.  
  Address [Filmer, E. K.; Grant, C. M.; Jackson, P.; Kong, A. X. Y.; Pandya, H. D.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001185791500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 6069  
Permanent link to this record
 

 
Author Guadilla, V.; Algora, A.; Estienne, M.; Fallot, M.; Gelletly, W.; Porta, A.; Rigalleau, L.M.; Stutzmann, J.S. url  doi
openurl 
  Title First measurements with a new fl-electron detector for spectral shape studies Type Journal Article
  Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 19 Issue 2 Pages P02027 - 21pp  
  Keywords Detector modelling and simulations I (interaction of radiation with matter; interaction of photons with matter; interaction of hadrons with matter; etc); Instrumentation for radioactive beams (fragmentation devices; fragment and isotope; separators incl. ISOL; isobar separators; ion and atom traps; weak-beam diagnostics; radioactive-beam ion sources); Hybrid detectors; Spectrometers  
  Abstract The shape of the electron spectrum emitted in /3 decay carries a wealth of information about nuclear structure and fundamental physics. In spite of that, few dedicated measurements have been made of /3 -spectrum shapes. In this work we present a newly developed detector for /3 electrons based on a telescope concept. A thick plastic scintillator is employed in coincidence with a thin silicon detector. The first measurements employing this detector have been carried out with mono -energetic electrons from the high-energy resolution electron -beam spectrometer at Bordeaux. Here we report on the good reproduction of the experimental spectra of mono -energetic electrons using Monte Carlo simulations. This is a crucial step for future experiments, where a detailed Monte Carlo characterization of the detector is needed to determine the shape of the /3 -electron spectra by deconvolution of the measured spectra with the response function of the detector. A chamber to contain two telescope assemblies has been designed for future /3 -decay experiments at the Ion Guide Isotope Separator On -Line facility in Jyvaskyla, aimed at improving our understanding of reactor antineutrino spectra.  
  Address [Guadilla, V.; Estienne, M.; Fallot, M.; Porta, A.; Rigalleau, L. -m.; Stutzmann, J. -s.] Univ Nantes, Subatech, IMT Atlantique, CNRS,IN2P3, F-44307 Nantes, France, Email: vguadilla@fuw.edu.pl  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001181748300007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 6064  
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Zornoza, J.D.; Manzaneda, M.; Gozzini, R.; Ricolfe-Viala, C.; Lajara, R.; Albiol, F. doi  openurl
  Title Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection Type Journal Article
  Year 2024 Publication Sensors Abbreviated Journal Sensors  
  Volume 24 Issue 7 Pages 2084 - 12pp  
  Keywords time-to-digital converters; neutrino telescopes; silicon photomultipliers; dark noise rate filtering  
  Abstract Silicon Photomultipliers find applications across various fields. One potential Silicon Photomultiplier application domain is neutrino telescopes, where they may enhance the angular resolution. However, the elevated dark count rate associated with Silicon Photomultipliers represents a significant challenge to their widespread utilization. To address this issue, it is proposed to use Silicon Photomultipliers and Photomultiplier Tubes together. The Photomultiplier Tube signals serve as a trigger to mitigate the dark count rate, thereby preventing undue saturation of the available bandwidth. This paper presents an investigation into a fast and resource-efficient method for filtering the Silicon Photomultiplier dark count rate. A low-resource and fast coincident filter has been developed, which removes the Silicon Photomultiplier dark count rate by using as a trigger the Photomultiplier Tube input signals. The architecture of the coincidence filter, together with the first results obtained, which validate the effectiveness of this method, is presented.  
  Address [Real, Diego; Calvo, David; Zornoza, Juan de Dios; Manzaneda, Mario; Gozzini, Rebecca; Albiol, Francisco] CSIC Univ Valencia, IFIC Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001201226600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial (down) 6063  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J. url  doi
openurl 
  Title Curvature-bias corrections using a pseudomass method Type Journal Article
  Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 19 Issue 3 Pages P03010 - 22pp  
  Keywords Analysis and statistical methods; Detector alignment and calibration methods (lasers, sources, particle-beams); Large detector-systems performance; Performance of High Energy Physics Detectors  
  Abstract Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy root s = 13 TeV during 2016, 2017 and 2018. The biases are determined using Z -> mu(+)mu(-) decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10(-4) GeV-1 level, improves the Z -> mu(+)mu(-) mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass.  
  Address [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: seophine.stanislaus@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001190907900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 6057  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J. url  doi
openurl 
  Title Measurement of J/ψ-pair production in pp collisions at √s=13 TeV and study of gluon transverse-momentum dependent PDFs Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 088 - 40pp  
  Keywords Hadron-Hadron Scattering; Multi-Parton Interactions; QCD; Quarkonium  
  Abstract The production cross-section of J/psi pairs in proton-proton collisions at a centre-of-mass energy of root s = 13TeV is measured using a data sample corresponding to an integrated luminosity of 4.2 fb(-1) collected by the LHCb experiment. The measurement is performed with both J/psi mesons in the transverse momentum range 0 < p(T) < 14 GeV/c and rapidity range 2.0 < y < 4.5. The cross-section of this process is measured to be 16.36 +/- 0.28 (stat) +/- 0.88 (syst) nb. The contributions from single-parton scattering and double-parton scattering are separated based on the dependence of the cross-section on the absolute rapidity difference Delta y between the two J/psi mesons. The effective cross-section of double-parton scattering is measured to be sigma(eff) = 13.1 +/- 1.8 (stat) +/- 2.3 (syst) mb. The distribution of the azimuthal angle phi(CS) of one of the J/psi mesons in the Collins-Soper frame and the p(T)-spectrum of the J/psi pairs are also measured for the study of the gluon transverse-momentum dependent distributions inside protons. The extracted values of < cos4 phi(CS)> and < cos2 phi(CS)> are consistent with zero, but the presence of azimuthal asymmetry at a few percent level is allowed.  
  Address [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Australia, Email: li.xu@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001194594600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 6050  
Permanent link to this record
 

 
Author Domcke, V.; Garcia-Cely, C.; Lee, S.M.; Rodd, N.L. url  doi
openurl 
  Title Symmetries and selection rules: optimising axion haloscopes for Gravitational Wave searches Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 128 - 51pp  
  Keywords Axions and ALPs; Early Universe Particle Physics  
  Abstract In the presence of electromagnetic fields, both axions and gravitational waves (GWs) induce oscillating magnetic fields: a potentially detectable fingerprint of their presence. We demonstrate that the response is largely dictated by the symmetries of the instruments used to search for it. Focussing on low mass axion haloscopes, we derive selection rules that determine the parametric sensitivity of different detector geometries to axions and GWs, and which further reveal how to optimise the experimental geometry to maximise both signals. The formalism allows us to forecast the optimal sensitivity to GWs in the range of 100 kHz to 100 MHz for instruments such as ABRACADABRA, BASE, ADMX SLIC, SHAFT, WISPLC, and DMRadio.  
  Address [Domcke, Valerie; Lee, Sung Mook; Rodd, Nicholas L.] CERN, Theoret Phys Dept, 1 Esplanade Particules, CH-1211 Geneva 23, Switzerland, Email: valerie.domcke@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001189228700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 6049  
Permanent link to this record
 

 
Author Black, K.M. et al; Zurita, J. url  doi
openurl 
  Title Muon Collider Forum report Type Journal Article
  Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 19 Issue 2 Pages T02015 - 95pp  
  Keywords Accelerator Applications; Accelerator Subsystems and Technologies; Instrumentation for particle accelerators and storage rings- high energy (linear accelerators, synchrotrons); Large detector systems for particle and astroparticle physics  
  Abstract A multi-TeV muon collider offers a spectacular opportunity in the direct exploration of the energy frontier. Offering a combination of unprecedented energy collisions in a comparatively clean leptonic environment, a high energy muon collider has the unique potential to provide both precision measurements and the highest energy reach in one machine that cannot be paralleled by any currently available technology. The topic generated a lot of excitement in Snowmass meetings and continues to attract a large number of supporters, including many from the early career community. In light of this very strong interest within the US particle physics community, Snowmass Energy, Theory and Accelerator Frontiers created a cross-frontier Muon Collider Forum in November of 2020. The Forum has been meeting on a monthly basis and organized several topical workshops dedicated to physics, accelerator technology, and detector R&D. Findings of the Forum are summarized in this report.  
  Address [Black, K. M.; Bose, T.; Dasu, S.; Everaerts, P.; Jia, H.; Lomte, S.; Pinna, D.; Venkatasubramanian, N.; Vuosalo, C.] Univ Wisconsin Madison, Madison, WI USA, Email: sergo@fnal.gov  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001185309300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 6048  
Permanent link to this record
 

 
Author De Romeri, V.; Majumdar, A.; Papoulias, D.K.; Srivastava, R. url  doi
openurl 
  Title XENONnT and LUX-ZEPLIN constraints on DSNB-boosted dark matter Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 028 - 34pp  
  Keywords dark matter detectors; dark matter simulations; supernova neutrinos; supernovas  
  Abstract We consider a scenario in which dark matter particles are accelerated to semirelativistic velocities through their scattering with the Diffuse Supernova Neutrino Background. Such a subdominant, but more energetic dark matter component can be then detected via its scattering on the electrons and nucleons inside direct detection experiments. This opens up the possibility to probe the sub -GeV mass range, a region of parameter space that is usually not accessible at such facilities. We analyze current data from the XENONnT and LUX-ZEPLIN experiments and we obtain novel constraints on the scattering cross sections of sub -GeV boosted dark matter with both nucleons and electrons. We also highlight the importance of carefully taking into account Earth's attenuation effects as well as the finite nuclear size into the analysis. By comparing our results to other existing constraints, we show that these effects lead to improved and more robust constraints.  
  Address [Romeri, Valentina De] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient UV C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001195757300010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 6043  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva