|   | 
Details
   web
Records
Author Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A.
Title Stellar structure models in modified theories of gravity: Lessons and challenges Type Journal Article
Year 2020 Publication Physics Reports Abbreviated Journal Phys. Rep.
Volume 876 Issue Pages 1-75
Keywords Stellar structure; Modified gravity; Palatini formalism; Neutron stars; Brown dwarfs; Relativistic stars; Weak field; f(R) theories; Born-Infeld theory; Horndeski theory
Abstract The understanding of stellar structure represents the crossroads of our theories of the nuclear force and the gravitational interaction under the most extreme conditions observably accessible. It provides a powerful probe of the strong field regime of General Relativity, and opens fruitful avenues for the exploration of new gravitational physics. The latter can be captured via modified theories of gravity, which modify the Einstein-Hilbert action of General Relativity and/or some of its principles. These theories typically change the Tolman-Oppenheimer-Volkoff equations of stellar's hydrostatic equilibrium, thus having a large impact on the astrophysical properties of the corresponding stars and opening a new window to constrain these theories with present and future observations of different types of stars. For relativistic stars, such as neutron stars, the uncertainty on the equation of state of matter at supranuclear densities intertwines with the new parameters coming from the modified gravity side, providing a whole new phenomenology for the typical predictions of stellar structure models, such as mass-radius relations, maximum masses, or moment of inertia. For non-relativistic stars, such as white, brown and red dwarfs, the weakening/strengthening of the gravitational force inside astrophysical bodies via the modified Newtonian (Poisson) equation may induce changes on the star's mass, radius, central density or luminosity, having an impact, for instance, in the Chandrasekhar's limit for white dwarfs, or in the minimum mass for stable hydrogen burning in high-mass brown dwarfs. This work aims to provide a broad overview of the main such results achieved in the recent literature for many such modified theories of gravity, by combining the results and constraints obtained from the analysis of relativistic and non-relativistic stars in different scenarios. Moreover, we will build a bridge between the efforts of the community working on different theories, formulations, types of stars, theoretical modelings, and observational aspects, highlighting some of the most promising opportunities in the field.
Address [Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1573 ISBN Medium
Area Expedition Conference
Notes WOS:000570298900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 4531
Permanent link to this record
 

 
Author Creminelli, P.; Loayza, N.; Serra, F.; Trincherini, E.; Trombetta, L.G.
Title Hairy black-holes in shift-symmetric theories Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 045 - 24pp
Keywords Black Holes; Classical Theories of Gravity
Abstract Scalar hair of black holes in theories with a shift symmetry are constrained by the no-hair theorem of Hui and Nicolis, assuming spherical symmetry, time-independence of the scalar field and asymptotic flatness. The most studied counterexample is a linear coupling of the scalar with the Gauss-Bonnet invariant. However, in this case the norm of the shift-symmetry current J(2) diverges at the horizon casting doubts on whether the solution is physically sound. We show that this is not an issue since J(2) is not a scalar quantity, since J(mu) is not a diffinvariant current in the presence of Gauss-Bonnet. The same theory can be written in Horndeski form with a non-analytic function G(5)similar to log X . In this case the shift-symmetry current is diff-invariant, but contains powers of X in the denominator, so that its divergence at the horizon is again immaterial. We confirm that other hairy solutions in the presence of non-analytic Horndeski functions are pathological, featuring divergences of physical quantities as soon as one departs from time-independence and spherical symmetry. We generalise the no-hair theorem to Beyond Horndeski and DHOST theories, showing that the coupling with Gauss-Bonnet is necessary to have hair.
Address [Creminelli, Paolo] Abdus Salaam Int Ctr Theoret Phys, Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy, Email: creminel@ictp.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000562728200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 4515
Permanent link to this record
 

 
Author Delhom, A.; Olmo, G.J.; Orazi, E.
Title Ricci-Based Gravity theories and their impact on Maxwell and nonlinear electromagnetic models Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 149 - 24pp
Keywords Classical Theories of Gravity; Beyond Standard Model
Abstract We extend the correspondence between metric-affine Ricci-Based Gravity the- ories and General Relativity (GR) to the case in which the matter sector is represented by linear and nonlinear electromagnetic fields. This complements previous studies focused on fluids and scalar fields. We establish the general algorithm that relates the matter fields in the GR and RBG frames and consider some applications. In particular, we find that the so-called Eddington-inspired Born-Infeld gravity theory coupled to Maxwell electromag- netism is in direct correspondence with GR coupled to Born-Infeld electromagnetism. We comment on the potential phenomenological implications of this relation.
Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: adria.delhom@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000513489000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 4281
Permanent link to this record
 

 
Author Afonso, V.I.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.
Title New scalar compact objects in Ricci-based gravity theories Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 12 Issue 12 Pages 044 - 20pp
Keywords modified gravity; gravity; GR black holes; Wormholes
Abstract Taking advantage of a previously developed method, which allows to map solutions of General Relativity into a broad family of theories of gravity based on the Ricci tensor (Ricci-based gravities), we find new exact analytical scalar field solutions by mapping the free-field static, spherically symmetric solution of General Relativity (GR) into quadratic f(R) gravity and the Eddington-inspired Born-Infeld gravity. The obtained solutions have some distinctive feature below the would-be Schwarzschild radius of a configuration with the same mass, though in this case no horizon is present. The compact objects found include wormholes, compact balls, shells of energy with no interior, and a new kind of object which acts as a kind of wormhole membrane. The latter object has Euclidean topology but connects antipodal points of its surface by transferring particles and null rays across its interior in virtually zero affine time. We point out the relevance of these results regarding the existence of compact scalar field objects beyond General Relativity that may effectively act as black hole mimickers.
Address [Afonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000507261900041 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 4252
Permanent link to this record
 

 
Author Izadi, A.; Shacker, S.S.; Olmo, G.J.; Banerjee, R.
Title Observational effects of varying speed of light in quadratic gravity cosmological models Type Journal Article
Year 2018 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.
Volume 15 Issue 5 Pages 1850084 - 16pp
Keywords Palatini formalism; modified gravity; causal structure constant; varying speed of light
Abstract We study different manifestations of the speed of light in theories of gravity where metric and connection are regarded as independent fields. We find that for a generic gravity theory in a frame with locally vanishing affine connection, the usual degeneracy between different manifestations of the speed of light is broken. In particular, the space-time causal structure constant (c(ST)) may become variable in that local frame. For theories of the form f(R, R-mu nu R-mu nu), this variation in c(ST) has an impact on the definition of the luminosity distance (and distance modulus), which can be used to confront the predictions of particular models against Supernovae type Ia (SN Ia) data. We carry out this test for a quadratic gravity model without cosmological constant assuming (i) a constant speed of light and (ii) a varying speed of light (VSL), and find that the latter scenario is favored by the data.
Address [Izadi, Azam] Khajeh Nasir Toosi Univ Technol, Dept Phys, Tehran, Iran, Email: aizadi@kntu.ac.ir;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0219-8878 ISBN Medium
Area Expedition Conference
Notes WOS:000429106400016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 3553
Permanent link to this record