|   | 
Details
   web
Records
Author Di Valentino, E.; Giusarma, E.; Lattanzi, M.; Melchiorri, A.; Mena, O.
Title Axion cold dark matter: Status after Planck and BICEP2 Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 4 Pages 043534 - 11pp
Keywords
Abstract We investigate the axion dark matter scenario (ADM), in which axions account for all of the dark matter in the Universe, in light of the most recent cosmological data. In particular, we use the Planck temperature data, complemented by WMAP E-polarization measurements, as well as the recent BICEP2 observations of B-modes. Baryon acoustic oscillation data, including those from the baryon oscillation spectroscopic survey, are also considered in the numerical analyses. We find that, in the minimal ADM scenario and for Delta(QCD) = 200 MeV, the full data set implies that the axion mass m(a) = 82.2 +/- 1.1 μeV [corresponding to the Peccei-Quinn symmetry being broken at a scale f(a) = (7.54 +/- 0.10) x 10(10) GeV], or m(a) = 76.6 +/- 2.6 μeV [f(a) = (8.08 +/- 0.27) x 10(10) GeV] when we allow for a nonstandard effective number of relativistic species N-eff. We also find a 2 sigma preference for N-eff > 3.046. The limit on the sum of neutrino masses is Sigma m(v) < 0.25 eV at 95% C.L. for N-eff = 3.046, or Sigma m(v) < 0.47 eV when N-eff is a free parameter. Considering extended scenarios where either the dark energy equation-of-state parameter w, the tensor spectral index n(t), or the running of the scalar index dn(s)/d ln k is allowed to vary does not change significantly the axion mass-energy density constraints. However, in the case of the full data set exploited here, there is a preference for a nonzero tensor index or scalar running, driven by the different tensor amplitudes implied by the Planck and BICEP2 observations. We also study the effect on our estimates of theoretical uncertainties, in particular the imprecise knowledge of the QCD scale Delta(QCD), in the calculation of the temperature-dependent axion mass. We find that in the simplest ADM scenario the Planck + WP data set implies that the axion mass m(a) = 63.7 +/- 1.2 μeV for Delta(QCD) = 400 MeV. We also comment on the possibility that axions do not make up for all the dark matter, or that the contribution of string-produced axions has been grossly underestimated; in that case, the values that we find for the mass can conservatively be considered as lower limits. Dark matter axions with mass in the 60-80 μeV (corresponding to an axion-photon coupling G(a gamma gamma) similar to 10(-14) GeV-1) range can, in principle, be detected by looking for axion-to-photon conversion occurring inside a tunable microwave cavity permeated by a high-intensity magnetic field, and operating at a frequency nu similar or equal to 15-20 GHz. This is out of the reach of current experiments like the axion dark matter experiment (limited to a maximum frequency of a few GHzs), but is, on the other hand, within the reach of the upcoming axion dark matter experiment-high frequency experiment that will explore the 4-40 GHz frequency range and then be sensitive to axion masses up to similar to 160 μeV.
Address [Di Valentino, Eleonora; Giusarma, Elena; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000340890100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 1893
Permanent link to this record
 

 
Author Anderson, L. et al; Mena, O.
Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples Type Journal Article
Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 441 Issue 1 Pages 24-62
Keywords cosmological parameters; cosmology: observations; dark energy; distance scale; large-scale structure of Universe
Abstract We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations (BAO) in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey, which is part of the Sloan Digital Sky Survey III. Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately 8500 square degrees and the redshift range 0.2 < z < 0.7. We also compare these results with those from the publicly released DR9 and DR10 samples. Assuming a concordance A cold dark matter (ACDM) cosmological model, the DR11 sample covers a volume of 13 Gpc(3) and is the largest region of the Universe ever surveyed at this density. We measure the correlation function and power spectrum, including density- field reconstruction of the BAO feature. The acoustic features are detected at a significance of over 7s in both the correlation function and power spectrum. Fitting for the position of the acoustic features measures the distance relative to the sound horizon at the drag epoch, r(d), which has a value of r(d,fid) = 149.28 Mpc in our fiducial cosmology. We find D-V = (1264 +/- 25 Mpc)(r(d)/r(d,fid)) at z = 0.32 and D-V = (2056 +/- 20 Mpc)(r(d)/r(d,fid)) at z = 0.57. At 1.0 per cent, this latter measure is the most precise distance constraint ever obtained from a galaxy survey. Separating the clustering along and transverse to the line of sight yields measurements at z = 0.57 of D-A = (1421 +/- 20 Mpc)(r(d)/r(d,fid)) and H = (96.8 +/- 3.4 kms(-1) Mpc(-1))(r(d),(fid)/r(d)). Our measurements of the distance scale are in good agreement with previous BAO measurements and with the predictions from cosmic microwave background data for a spatially flat CDM model with a cosmological constant.
Address [Anderson, Lauren; Bhardwaj, Vaishali] Univ Washington, Dept Astron, Seattle, WA 98195 USA, Email: djschlegel@lbl.gov;
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000336249300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 1791
Permanent link to this record
 

 
Author Adey, D. et al; Cervera-Villanueva, A.; Donini, A.; Ghosh, T.; Gomez-Cadenas, J.J.; Hernandez, P.; Izmaylov, A.; Laing, A.; Mena, O.; Sorel, M.; Stamoulis, P.
Title Light sterile neutrino sensitivity at the nuSTORM facility Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 89 Issue 7 Pages 071301 - 7pp
Keywords
Abstract A facility that can deliver beams of electron and muon neutrinos from the decay of a stored muon beam has the potential to unambiguously resolve the issue of the evidence for light sterile neutrinos that arises in short-baseline neutrino oscillation experiments and from estimates of the effective number of neutrino flavors from fits to cosmological data. In this paper, we show that the nuSTORM facility, with stored muons of 3.8 GeV/c +/- 10%, will be able to carry out a conclusive muon neutrino appearance search for sterile neutrinos and test the LSND and MiniBooNE experimental signals with 10 sigma sensitivity, even assuming conservative estimates for the systematic uncertainties. This experiment would add greatly to our knowledge of the contribution of light sterile neutrinos to the number of effective neutrino flavors from the abundance of primordial helium production and from constraints on neutrino energy density from the cosmic microwave background. The appearance search is complemented by a simultaneous muon neutrino disappearance analysis that will facilitate tests of various sterile neutrino models.
Address [Adey, D.; Brice, S. J.; Bross, A. D.; Cease, H.; Geelhoed, M.; Kobilarcik, T.; Liu, A.; Mokhov, N.; Morfin, J.; Neuffer, D.; Palmer, M. A.; Parke, S.; Plunkett, R.; Popovic, M.; Rubinov, P.; Sen, T.; Snopok, P.; Striganov, S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA, Email: Ryan.Bayes@glasgow.ac.uk
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000334317200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 1753
Permanent link to this record
 

 
Author Anderson, L. et al; Mena, O.
Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring D-A and H at z=0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample Type Journal Article
Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 439 Issue 1 Pages 83-101
Keywords cosmological parameters; cosmology: observations; dark energy; distance scale; large scale structure of Universe
Abstract We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43 < z < 0.70. We use two different methods to provide robust measurement of the acoustic peak position across and along the line of sight in order to measure the cosmological distance scale. We find D-A(0.57) = 1408 +/- 45 Mpc and H(0.57) = 92.9 +/- 7.8 km s(-1) Mpc(-1) for our fiducial value of the sound horizon. These results from the anisotropic fitting are fully consistent with the analysis of the spherically averaged acoustic peak position presented in Anderson et al. Our distance measurements are a close match to the predictions of the standard cosmological model featuring a cosmological constant and zero spatial curvature.
Address [Anderson, Lauren] Univ Washington, Dept Astron, Seattle, WA 98195 USA, Email: djschlegel@lbl.gov
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000333297700026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 1738
Permanent link to this record
 

 
Author Diamanti, R.; Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Vincent, A.C.
Title Constraining dark matter late-time energy injection: decays and p-wave annihilations Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 017 - 24pp
Keywords dark matter theory; CMBR theory
Abstract We use the latest cosmic microwave background (CMB) observations to provide updated constraints on the dark matter lifetime as well as on p-wave suppressed annihilation cross sections in the 1 MeV to 1 TeV mass range. In contrast to scenarios with an s-wave dominated annihilation cross section, which mainly affect the CMB close to the last scattering surface, signatures associated with these scenarios essentially appear at low redshifts (z less than or similar to 50) when structure began to form, and thus manifest at lower multipoles in the CMB power spectrum. We use data from Planck, WMAP9, SPT and ACT, as well as Lyman-alpha measurements of the matter temperature at z similar to 4 to set a 95% confidence level lower bound on the dark matter lifetime of similar to 4 x 10(25) s for m(chi) = 100 MeV. This bound becomes lower by an order of magnitude at m(chi) = 1 TeV due to inefficient energy deposition into the inter-galactic medium. We also show that structure formation can enhance the effect of p-wave suppressed annihilation cross sections by many orders of magnitude with respect to the background cosmological rate, although even with this enhancement, CMB constraints are not yet strong enough to reach the thermal relic value of the cross section.
Address [Diamanti, Roberta; Mena, Olga; Palomares-Ruiz, Sergio; Vincent, Aaron C.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: R.Diamanti@uva.nl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000332711400017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 1732
Permanent link to this record