toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title A flipped 331 model Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 003 - 12pp  
  Keywords Beyond Standard Model; Gauge Symmetry; Neutrino Physics  
  Abstract Models based on the extended SU(3)(C) x SU(3)(L) x U(1)(X) (331) gauge group usually follow a common pattern: two families of left-handed quarks are placed in anti triplet representations of the SU(3)(L) group; the remaining quark family, as well as the left-handed leptons, are assigned to triplets (or vice-versa). In this work we present a flipped 331 model where this scheme is reversed: all three quark families are in the same representation and it is the lepton families which are discriminated by the gauge symmetry. We discuss fermion masses and mixing, as well as Z' interactions, in a minimal model implementing this idea.  
  Address [Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,Calle Jose Beltran, E-46980 Paterna, Valencia, Spain, Email: renato.fonseca@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000381218300003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial (down) 2782  
Permanent link to this record
 

 
Author Helo, J.C.; Hirsch, M.; Ota, T. url  doi
openurl 
  Title Long-range contributions to double beta decay revisited Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 006 - 32pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We discuss the systematic decomposition of all dimension-7 (d = 7) lepton number violating operators. These d = 7 operators produce momentum enhanced contributions to the long-range part of the 0 nu beta beta decay amplitude and thus are severely constrained by existing half-live limits. In our list of possible models one can find contributions to the long-range amplitude discussed previously in the literature, such as the left-right symmetric model or scalar leptoquarks, as well as some new models not considered before. The d = 7 operators generate Majorana neutrino mass terms either at tree-level, 1-loop or 2-loop level. We systematically compare constraints derived from the mass mechanism to those derived from the long-range 0 nu beta beta decay amplitude and classify our list of models accordingly. We also study one particular example decomposition, which produces neutrino masses at 2-loop level, can fit oscillation data and yields a large contribution to the long-range 0 nu beta beta decay amplitude, in some detail.  
  Address [Helo, J. C.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Casilla 110-5, Valparaiso, Chile, Email: juancarlos.helo@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000377413400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 2721  
Permanent link to this record
 

 
Author Hirsch, M.; Krauss, M.E.; Opferkuch, T.; Porod, W.; Staub, F. url  doi
openurl 
  Title A constrained supersymmetric left-right model Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 009 - 22pp  
  Keywords Supersymmetry Phenomenology  
  Abstract We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model's capability to explain current anomalies observed at the LHC.  
  Address [Hirsch, Martin] Univ Valencia, Inst Fis Corpuscular CSIC, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000371428600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 2564  
Permanent link to this record
 

 
Author Gonzalez, M.; Kovalenko, S.G.; Hirsch, M. url  doi
openurl 
  Title QCD running in neutrinoless double beta decay: Short-range mechanisms Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 1 Pages 013017 - 11pp  
  Keywords  
  Abstract The decay rate of neutrinoless double beta (0 nu beta beta) decay contains terms from heavy particle exchange, which lead to dimension-9 (d = 9) six fermion operators at low energies. Limits on the coefficients of these operators have been derived previously neglecting the running of the operators between the high scale, where they are generated, and the energy scale of 0 nu beta beta decay, where they are measured. Here we calculate the leading-order QCD corrections to all possible d = 9 operators contributing to the 0 nu beta beta amplitude and use renormalization group running to calculate 1-loop improved limits. Numerically, QCD running dramatically changes some limits by factors of the order of or larger than typical uncertainties in nuclear matrix element calculations. For some specific cases, operator mixing in the running changes limits even by up to 3 orders of magnitude. Our results can be straightforwardly combined with new experimental limits or improved nuclear matrix element calculations to rederive updated limits on all short-range contributions to 0 nu beta beta decay.  
  Address [Gonzalez, M.; Kovalenko, S. G.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Casilla 110-V, Valparaiso 2390123, Chile, Email: marcela.gonzalezp@titulados.usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368516100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 2539  
Permanent link to this record
 

 
Author Helo, J.C.; Hirsch, M.; Ota, T.; Pereira dos Santos, F.A. url  doi
openurl 
  Title Double beta decay and neutrino mass models Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 092 - 40pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract Neutrinoless double beta decay allows to constrain lepton number violating extensions of the standard model. If neutrinos are Majorana particles, the mass mechanism will always contribute to the decay rate, however, it is not a priori guaranteed to be the dominant contribution in all models. Here, we discuss whether the mass mechanism dominates or not from the theory point of view. We classify all possible (scalar-mediated) short-range contributions to the decay rate according to the loop level, at which the corresponding models will generate Majorana neutrino masses, and discuss the expected relative size of the different contributions to the decay rate in each class. Our discussion is general for models based on the SM group but does not cover models with an extended gauge. We also work out the phenomenology of one concrete 2-loop model in which both, mass mechanism and short-range diagram, might lead to competitive contributions, in some detail.  
  Address [Helo, J. C.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Valparaiso, Chile, Email: juancarlos.helo@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000363471700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 2441  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva