|   | 
Details
   web
Records
Author Bonilla, C.; Krauss, M.E.; Opferkuch, T.; Porod, W.
Title Perspectives for detecting lepton flavour violation in left-right symmetric models Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 027 - 50pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We investigate lepton flavour violation in a class of minimal left-right symmetric models where the left-right symmetry is broken by triplet scalars. In this context we present a method to consistently calculate the triplet-Yukawa couplings which takes into account the experimental data while simultaneously respecting the underlying symmetries. Analysing various scenarios, we then calculate the full set of tree-level and one-loop contributions to all radiative and three-body flavour-violating fully leptonic decays as well as well as μ- e conversion in nuclei. Our method illustrates how these processes depend on the underlying parameters of the theory. To that end we observe that, for many choices of the model parameters, there is a strong complementarity between the different observables. For instance, in a large part of the parameter space, lepton flavour violating T-decays have a large enough branching ratio to be measured in upcoming experiments. Our results further show that experiments coming online in the immediate future, like Mu3e and BELLE II, or longer-term, such as PRISM/PRIME, will probe significant portions of the currently allowed parameter space.
Address [Bonilla, Cesar] Univ Valencia, Inst Fis Corpuscular, CSIC, AHEP Grp, Edificio Inst Paterna, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000397669900009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 3027
Permanent link to this record
 

 
Author Bonilla, C.; Ma, E.; Peinado, E.; Valle, J.W.F.
Title Two-loop Dirac neutrino mass and WIMP dark matter Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 762 Issue Pages 214-218
Keywords Neutrino masses and mixing; Dark matter stability
Abstract We propose a “scotogenic” mechanism relating small neutrino mass and cosmological dark matter. Neutrinos are Dirac fermions with masses arising only in two-loop order through the sector responsible for dark matter. Two triality symmetries ensure both dark matter stability and strict lepton number conservation at higher orders. A global spontaneously broken U(1) symmetry leads to a physical Diraconthat induces invisible Higgs decays which add up to the Higgs to dark matter mode. This enhances sensitivities to spin-independent WIMP dark matter search below m(h)/2.
Address [Bonillaa, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000388473700029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 2979
Permanent link to this record
 

 
Author Bonilla, C.; Valle, J.W.F.
Title Naturally light neutrinos in Diracon model Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 762 Issue Pages 162-165
Keywords
Abstract We propose a simple model for Dirac neutrinos where the smallness of neutrino mass follows from a parameter kappa whose absence enhances the symmetry of the theory. Symmetry breaking is performed in a two-doublet Higgs sector supplemented by a gauge singlet scalar, realizing an accidental global U(1) symmetry. Its spontaneous breaking at the few TeV scale leads to a physical Nambu -Goldstone – boson the Diracon, denoted D – which is restricted by astrophysics and induces invisible Higgs decays such as h -> DD. The scheme provides a rich, yet very simple scenario for symmetry breaking studies at colliders such as the LHC.
Address [Bonilla, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000388473700022 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial (down) 2978
Permanent link to this record
 

 
Author Bonilla, C.; Sokolowska, D.; Darvishi, N.; Diaz-Cruz, J.L.; Krawczyk, M.
Title IDMS: inert dark matter model with a complex singlet Type Journal Article
Year 2016 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 43 Issue 6 Pages 065001 - 39pp
Keywords CP violation; inert doublet model; complex singlet
Abstract We study an extension of the inert doublet model (IDM) that includes an extra complex singlet of the scalars fields, which we call the IDMS. In this model there are three Higgs particles, among them a SM-like Higgs particle, and the lightest neutral scalar, from the inert sector, remains a viable dark matter (DM) candidate. We assume a non-zero complex vacuum expectation value for the singlet, so that the visible sector can introduce extra sources of CP violation. We construct the scalar potential of IDMS, assuming an exact Z(2) symmetry, with the new singlet being Z(2)-even, as well as a softly broken U(1) symmetry, which allows a reduced number of free parameters in the potential. In this paper we explore the foundations of the model, in particular the masses and interactions of scalar particles for a few benchmark scenarios. Constraints from collider physics, in particular from the Higgs signal observed at the Large Hadron Collider with M-h approximate to 125 GeV, as well as constraints from the DM experiments, such as relic density measurements and direct detection limits, are included in the analysis. We observe significant differences with respect to the IDM in relic density values from additional annihilation channels, interference and resonance effects due to the extended Higgs sector.
Address [Bonilla, Cesar] Univ Valencia, CSIC, Inst Fis Corpuscular, Apdo 22085, E-46071 Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000376276900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 2687
Permanent link to this record
 

 
Author Bonilla, C.; Nebot, M.; Valle, J.W.F.; Srivastava, R.
Title Flavor physics scenario for the 750 GeV diphoton anomaly Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue 7 Pages 073009 - 5pp
Keywords
Abstract A simple variant of a realistic flavor symmetry scheme for fermion masses and mixings provides a possible interpretation of the diphoton anomaly as an electroweak singlet “flavon.” The existence of TeV scale vectorlike T-quarks required to provide adequate values for Cabibbo-Kobayashi-Maskawa (CKM) parameters can also naturally account for the diphoton anomaly. Correlations between V-ub and V-cb with the vectorlike T-quark mass can be predicted. Should the diphoton anomaly survive in a future run, our proposed interpretation can also be tested in upcoming B and LHC studies.
Address [Bonilla, Cesar; Nebot, Miguel; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient Paterna C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000374548300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 2669
Permanent link to this record