|   | 
Details
   web
Records
Author Reid, B.A. et al; de Putter, R.
Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering Type Journal Article
Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 426 Issue 4 Pages 2719-2737
Keywords galaxies: haloes; galaxies: statistics; cosmological parameters; large-scale structure of Universe
Abstract We analyse the anisotropic clustering of massive galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) sample, which consists of 264-283 galaxies in the redshift range 0.43 < z < 0.7 spanning 3275 deg(2). Both peculiar velocities and errors in the assumed redshiftdistance relation (AlcockPaczynski effect) generate correlations between clustering amplitude and orientation with respect to the line of sight. Together with the sharp baryon acoustic oscillation (BAO) standard ruler, our measurements of the broad-band shape of the monopole and quadrupole correlation functions simultaneously constrain the comoving angular diameter distance (2190 +/- 61 Mpc) to z = 0.57, the Hubble expansion rate at z = 0.57 (92.4 +/- 4.5 km s(-1) Mpc(-1)) and the growth rate of structure at that same redshift (d(sigma 8)/d ln a = 0.43 +/- 0.069). Our analysis provides the best current direct determination of both DA and H in galaxy clustering data using this technique. If we further assume a cold dark matter expansion history, our growth constraint tightens to d(sigma 8)/d ln a = 0.415 +/- 0.034. In combination with the cosmic microwave background, our measurements of D-A,H and d(sigma 8)/d ln a all separately require dark energy at z > 0.57, and when combined imply Omega(A) = 0.74 +/- 0.016, independent of the Universe's evolution at z < 0.57. All of these constraints assume scale-independent linear growth, and assume general relativity to compute both O(10 per cent) non-linear model corrections and our errors. In our companion paper, Samushia et al., we explore further cosmological implications of these observations.
Address [Reid, Beth A.; White, Martin; Bailey, Stephen; Roe, N. A.; Ross, Nicholas P.; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA, Email: beth.ann.reid@gmail.com
Corporate Author Thesis
Publisher Wiley-Blackwell Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000310064400008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 1192
Permanent link to this record
 

 
Author Norena, J.; Verde, L.; Barenboim, G.; Bosch, C.
Title Prospects for constraining the shape of non-Gaussianity with the scale-dependent bias Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 019 - 16pp
Keywords redshift surveys; cosmological parameters from LSS; inflation
Abstract We consider whether the non-Gaussian scale-dependent halo bias can be used not only to constrain the local form of non-Gaussianity but also to distinguish among different shapes. In particular, we ask whether it can constrain the behavior of the primordial three-point function in the squeezed limit where one of the momenta is much smaller than the other two. This is potentially interesting since the observation of a three-point function with a squeezed limit that does not go like the local nor equilateral templates would be a signal of non-trivial dynamics during inflation. To this end we use the quasi-single field inflation model of Chen & Wang [1, 2] as a representative two-parameter model, where one parameter governs the amplitude of non-Gaussianity and the other the shape. We also perform a model-independent analysis by parametrizing the scale-dependent bias as a power-law on large scales, where the power is to be constrained from observations. We find that proposed large-scale structure surveys (with characteristics similar to the dark energy task force stage IV surveys) have the potential to distinguish among the squeezed limit behavior of different bispectrum shapes for a wide range of fiducial model parameters. Thus the halo bias can help discriminate between different models of inflation.
Address [Norena, Jorge; Verde, Licia] Univ Barcelona ICC UB IEEC, Inst Ciencias Cosmos, Barcelona 08028, Spain, Email: jorge.norena@icc.ub.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000308800700020 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial (down) 1189
Permanent link to this record
 

 
Author Reid, B.A.; Verde, L.; Jimenez, R.; Mena, O.
Title Robust neutrino constraints by combining low redshift observations with the CMB Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 003 - 21pp
Keywords cluster counts; cosmological parameters from LSS; neutrino masses from cosmology; cosmological parameters from CMBR
Abstract We illustrate how recently improved low-redshift cosmological measurements can tighten constraints on neutrino properties. In particular we examine the impact of the assumed cosmological model on the constraints. We first consider the new HST H-0 = 74.2 +/- 3.6 measurement by Riess et al. (2009) and the sigma(8)(Omega(m)/0.25)(0.41) = 0.832 +/- 0.033 constraint from Rozo et al. (2009) derived from the SDSS maxBCG Cluster Catalog. In a ACDM model and when combined with WMAP5 constraints, these low-redshift measurements constrain Sigma m(v) < 0.4 eV at the 95% confidence level. This bound does not relax when allowing for the running of the spectral index or for primordial tensor perturbations. When adding also Supernovae and BAO constraints, we obtain a 95% upper limit of Sigma m(v) < 0.3eV. We test the sensitivity of the neutrino mass constraint to the assumed expansion history by both allowing a dark energy equation of state parameter w not equal -1 and by studying a model with coupling between dark energy and dark matter, which allows for variation in w, Omega(k), and dark coupling strength xi. When combining CMB, H-0 and the SDSS LRG halo power spectrum from Reid et al. 2009, we find that in this very general model, Sigma m(v) < 0.51 eV with 95% confidence. If we allow the number of relativistic species N-rel to vary in a ACDM model with Sigma m(v) = 0, we find N-rel = 3.76(-0.68)(+0.63)(+1.38 -1.21) for the 68% and 95% confidence intervals. We also report prior-independent constraints, which are in excellent agreement with the Bayesian constraints.
Address [Reid, Beth A.] Univ Barcelona, Inst Sci Cosmos ICC, E-08028 Barcelona, Spain, Email: beth.ann.reid@gmail.com
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000273314600008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial (down) 511
Permanent link to this record
 

 
Author Barenboim, G.; Fernandez-Martinez, E.; Mena, O.; Verde, L.
Title The dark side of curvature Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 008 - 17pp
Keywords dark energy experiments; baryon acoustic oscillations; cosmological parameters from CMBR
Abstract Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d(A)(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Omega(k) in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d(A)(z) up to sufficiently high redshifts z similar to 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z) – Omega(k) degeneracy.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: Gabriela.Barenboim@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000276103000026 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial (down) 465
Permanent link to this record
 

 
Author Carbone, C.; Mena, O.; Verde, L.
Title Cosmological parameters degeneracies and non-Gaussian halo bias Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 020 - 17pp
Keywords power spectrum; redshift surveys; galaxy clusters; cosmological parameters from LSS
Abstract We study the impact of the cosmological parameters uncertainties on the measurements of primordial non-Gaussianity through the large-scale non-Gaussian halo bias effect. While this is not expected to be an issue for the standard Lambda CDM model, it may not be the case for more general models that modify the large-scale shape of the power spectrum. We consider the so-called local non-Gaussianity model, parametrized by the f(NL) non-Gaussianity parameter which is zero for a Gaussian case, and make forecasts on f(NL) from planned surveys, alone and combined with a Planck CMB prior. In particular, we consider EUCLID- and LSST-like surveys and forecast the correlations among f(NL) and the running of the spectral index alpha(s), the dark energy equation of state w, the effective sound speed of dark energy perturbations c(s)(2), the total mass of massive neutrinos M-nu = Sigma m(nu), and the number of extra relativistic degrees of freedom N-nu(rel). Neglecting CMB information on f(NL) and scales k > 0.03h/Mpc, we find that, if N-nu(rel) is assumed to be known, the uncertainty on cosmological parameters increases the error on f(NL) by 10 to 30% depending on the survey. Thus the f(NL) constraint is remarkable robust to cosmological model uncertainties. On the other hand, if N-nu(rel) is simultaneously constrained from the data, the f(NL) error increases by similar to 80%. Finally, future surveys which provide a large sample of galaxies or galaxy clusters over a volume comparable to the Hubble volume can measure primordial non-Gaussianity of the local form with a marginalized 1-sigma error of the order Delta f(NL) similar to 2 – 5, after combination with CMB priors for the remaining cosmological parameters. These results are competitive with CMB bispectrum constraints achievable with an ideal CMB experiment.
Address [Carbone, Carmelita] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy, Email: carmelita.carbone@unibo.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000283573200010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial (down) 347
Permanent link to this record