|   | 
Details
   web
Records
Author NEXT Collaboration (Navarro, K.E. et al); Carcel, S.; Carrion, J.V.; Lopez, F.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.
Title A compact dication source for Ba2+ tagging and heavy metal ion sensor development Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 7 Pages P07044 - 19pp
Keywords Beam Optics; Heavy-ion detectors; Ion identification systems; Ion sources (positive ions; negative ions; electron cyclotron resonance (ECR); electron beam (EBIS))
Abstract We present a tunable metal ion beam that delivers controllable ion currents in the picoamp range for testing of dry-phase ion sensors. Ion beams are formed by sequential atomic evaporation and single or multiple electron impact ionization, followed by acceleration into a sensing region. Controllability of the ionic charge state is achieved through tuning of electrode potentials that influence the retention time in the ionization region. Barium, lead, and cadmium samples have been used to test the system, with ion currents identified and quantified using a quadrupole mass analyzer. Realization of a clean Ba2+ ion beam within a bench-top system represents an important technical advance toward the development and characterization of barium tagging systems for neutrinoless double beta decay searches in xenon gas. This system also provides a testbed for investigation of novel ion sensing methodologies for environmental assay applications, with dication beams of Pb2+ and Cd2+ also demonstrated for this purpose.
Address [Navarro, K. E.; Baeza-Rubio, J.; Giri, S.; Jones, B. J. P.; Nygren, D. R.; Samaniego, F. J.; Stogsdill, K.; Tiscareno, M. R.; Byrnes, N.; Dey, E.; Mistry, K.; Parmaksiz, I.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA, Email: karen.navarro@uta.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001106703500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 5860
Permanent link to this record
 

 
Author Gross, F. et al; Ramos, A.; Vos, M.
Title 50 Years of quantum chromodynamics Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 12 Pages 1125 - 636pp
Keywords
Abstract Quantum Chromodynamics, the theory of quarks and gluons, whose interactions can be described by a local SU(3) gauge symmetry with charges called “color quantum numbers”, is reviewed; the goal of this review is to provide advanced Ph.D. students a comprehensive handbook, helpful for their research. When QCD was “discovered” 50 years ago, the idea that quarks could exist, but not be observed, left most physicists unconvinced. Then, with the discovery of charmonium in 1974 and the explanation of its excited states using the Cornell potential, consisting of the sum of a Coulomb-like attraction and a long range linear confining potential, the theory was suddenly widely accepted. This paradigm shift is now referred to as the November revolution. It had been anticipated by the observation of scaling in deep inelastic scattering, and was followed by the discovery of gluons in three-jet events. The parameters of QCD include the running coupling constant, as (Q(2)), that varies with the energy scale Q(2) characterising the interaction, and six quark masses. QCD cannot be solved analytically, at least not yet, and the large value of alpha(s) at low momentum transfers limits perturbative calculations to the high-energy region where Q(2) >>Lambda(QCD) (2) similar or equal to (250 MeV)(2). Lattice QCD (LQCD), numerical calculations on a discretized space-time lattice, is discussed in detail, the dynamics of the QCD vacuum is visualized, and the expected spectra of mesons and baryons are displayed. Progress in lattice calculations of the structure of nucleons and of quantities related to the phase diagram of dense and hot (or cold) hadronic matter are reviewed. Methods and examples of how to calculate hadronic corrections to weak matrix elements on a lattice are outlined. The wide variety of analytical approximations currently in use, and the accuracy of these approximations, are reviewed. Thesemethods range from the Bethe-Salpeter, Dyson-Schwinger coupled relativistic equations, which are formulated in bothMinkowski or Euclidean spaces, to expansions of multi-quark states in a set of basis functions using light-front coordinates, to the AdS/QCD method that imbeds 4-dimensionalQCDin a 5-dimensional deSitter space, allowing confinement and spontaneous chiral symmetry breaking to be described in a novel way. Models that assume the number of colors is very large, i.e. make use of the large Nclimit, give unique insights. Many other techniques that are tailored to specific problems, such as perturbative expansions for high energy scattering or approximate calculations using the operator product expansion are discussed. The very powerful effective field theory techniques that are successful for low energy nuclear systems (chiral effective theory), or for non-relativistic systems involving heavy quarks, or the treatment of gluon exchanges between energetic, collinear partons encountered in jets, are discussed. The spectroscopy of mesons and baryons has played an important historical role in the development of QCD. The famous X,Y,Z states – and the discovery of pentaquarks – have revolutionized hadron spectroscopy; their status and interpretation are reviewed as well as recent progress in the identification of glueballs and hybrids in light-meson spectroscopy. These exotic states add to the spectrum of expected q ($) over barq mesons and qqq baryons. The progress in understanding excitations of light and heavy baryons is discussed. The nucleon as the lightest baryon is discussed extensively, its form factors, its partonic structure and the status of the attempt to determine a three-dimensional picture of the parton distribution. An experimental program to study the phase diagram of QCD at high temperature and density started with fixed target experiments in various laboratories in the second half of the 1980s, and then, in this century, with colliders. QCD thermodynamics at high temperature became accessible to LQCD, and numerical results on chiral and deconfinement transitions and properties of the deconfined and chirally restored form of strongly interacting matter, called the Quark-Gluon Plasma (QGP), have become very precise by now. These results can now be confronted with experimental data that are sensitive to the nature of the phase transition. There is clear evidence that the QGP phase is created. This phase of QCD matter can already be characterized by some properties that indicate, within a temperature range of a few times the pseudocritical temperature, the medium behaves like a near ideal liquid. Experimental observables are presented that demonstrate deconfinement. High and ultrahigh density QCD matter at moderate and low temperatures shows interesting features and new phases that are of astrophysical relevance. They are reviewed here and some of the astrophysical implications are discussed. Perturbative QCD and methods to describe the different aspects of scattering processes are discussed. The primary partonparton scattering in a collision is calculated in perturbative QCD with increasing complexity. The radiation of soft gluons can spoil the perturbative convergence, this can be cured by resummation techniques, which are also described here. Realistic descriptions of QCD scattering events need to model the cascade of quark and gluon splittings until hadron formation sets in, which is done by parton showers. The full event simulation can be performed with Monte Carlo event
Address [Gross, Franz; Burkert, Volker D.; Orginos, Kostas; Deur, Alexandre; Dudek, Jozef; Grube, Boris; Melnitchouk, Wally; Qiu, Jianwei; Rossi, Patrizia; Weiss, Christian] Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA, Email: klempt@hiskp.uni-bonn.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001124298200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 5859
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.
Title The Hawking Effect in the Particles-Partners Correlations Type Journal Article
Year 2023 Publication Physics Abbreviated Journal Physics
Volume 5 Issue 4 Pages 968-982
Keywords quantum fields in curved space; black holes; Hawking radiation; correlations across the horizon
Abstract We analyze the correlations functions across the horizon in Hawking black hole radiation to reveal the correlations between Hawking particles and their partners. The effects of the underlying space-time on this are shown in various examples ranging from acoustic black holes to regular black holes.
Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: roberto.balbinot@unibo.it;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001130983900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 5858
Permanent link to this record
 

 
Author Heidari, N.; Hassanabadi, H.; Araujo Filho, A.A.; Kriz, J.; Zare, S.; Porfirio, P.J.
Title Gravitational signatures of a non-commutative stable black hole Type Journal Article
Year 2024 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 43 Issue Pages 101382 - 13pp
Keywords Non-commutativity; Black hole; Shadows; Geodesics
Abstract This work investigates several key aspects of a non-commutative theory with mass deformation. We calculate thermodynamic properties of the system and compare our results with recent literature. We examine the quasinormal modes of massless scalar perturbations using two approaches: the WKB approximation and the Poschl-Teller fitting method. Our results indicate that stronger non-commutative parameters lead to slower damping oscillations of gravitational waves and higher partial absorption cross sections. Furthermore, we study the geodesics of massless and massive particles, highlighting that the non-commutative parameter (R) significantly impacts the paths of light and event horizons. Also, we calculate the shadows, which show that larger values of (R) correspond to larger shadow radii, and provide some constraints on (R) applying the observation of Sgr A* from the Event Horizon Telescope. Finally, we explore the deflection angle in this context.
Address [Heidari, N.; Hassanabadi, H.] Shahrood Univ Technol, Fac Phys, Shahrood, Iran, Email: heidari.n@gmail.com;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001126934800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 5857
Permanent link to this record
 

 
Author Lasa-Alonso, J.; Olmos-Trigo, J.; Devescovi, C.; Hernandez, P.; Garcia-Etxarri, A.; Molina-Terriza, G.
Title Resonant helicity mixing of electromagnetic waves propagating through matter Type Journal Article
Year 2023 Publication Physical Review Research Abbreviated Journal Phys. Rev. Res.
Volume 5 Issue 2 Pages 023116 - 8pp
Keywords
Abstract Dual scatterers preserve the helicity of an incident field, whereas antidual scatterers flip it completely. In this setting of linear electromagnetic scattering theory, we provide a completely general proof on the nonexistence of passive antidual scatterers. However, we show that scatterers fulfilling the refractive index matching condition flip the helicity of the fields very efficiently without being in contradiction with the law of energy conservation. Moreover, we find that this condition is paired with the impedance matching condition in several contexts of electromagnetism and, in particular, within Fresnel's and Mie's scattering problems. Finally, we show that indexmatched media induce a resonant helicity mixing on the propagating electromagnetic waves. We reach this conclusion by identifying that the refractive index matching condition leads to the phenomenon of avoided crossing.
Address [Lasa-Alonso, Jon; Molina-Terriza, Gabriel] Ctr Fis Mat, Paseo Manuel Lardizabal 5, Donostia San Sebastian 20018, Spain, Email: jonqnanolab@gmail.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000999546300002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial (down) 5856
Permanent link to this record
 

 
Author Martín-Luna, P.; Bonatto, A.; Bontoiu, C.; Xia, G.; Resta-Lopez, J.
Title Excitation of wakefields in carbon nanotubes: a hydrodynamic model approach Type Journal Article
Year 2023 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 25 Issue 12 Pages 123029 - 12pp
Keywords carbon nanotube; wakefield; electron gas; plasmons
Abstract The interactions of charged particles with carbon nanotubes (CNTs) may excite electromagnetic modes in the electron gas produced in the cylindrical graphene shell constituting the nanotube wall. This wake effect has recently been proposed as a potential novel method of short-wavelength high-gradient particle acceleration. In this work, the excitation of these wakefields is studied by means of the linearized hydrodynamic model. In this model, the electronic excitations on the nanotube surface are described treating the electron gas as a 2D plasma with additional contributions to the fluid momentum equation from specific solid-state properties of the gas. General expressions are derived for the excited longitudinal and transverse wakefields. Numerical results are obtained for a charged particle moving within a CNT, paraxially to its axis, showing how the wakefield is affected by parameters such as the particle velocity and its radial position, the nanotube radius, and a friction factor, which can be used as a phenomenological parameter to describe effects from the ionic lattice. Assuming a particle driver propagating on axis at a given velocity, optimal parameters were obtained to maximize the longitudinal wakefield amplitude.
Address [Martin-Luna, P.] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular IFIC, Paterna 46980, Spain, Email: pablo.martin@uv.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:001126333400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 5855
Permanent link to this record
 

 
Author Gerbino, M. et al; Martinez-Mirave, P.; Mena, O.; Tortola, M.; Valle, J.W. .
Title Synergy between cosmological and laboratory searches in neutrino physics Type Journal Article
Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 42 Issue Pages 101333 - 36pp
Keywords Neutrinos; Cosmology; Neutrino phenomenology
Abstract The intersection of the cosmic and neutrino frontiers is a rich field where much discovery space still remains. Neutrinos play a pivotal role in the hot big bang cosmology, influencing the dynamics of the universe over numerous decades in cosmological history. Recent studies have made tremendous progress in understanding some properties of cosmological neutrinos, primarily their energy density. Upcoming cosmological probes will measure the energy density of relativistic particles with higher precision, but could also start probing other properties of the neutrino spectra. When convolved with results from terrestrial experiments, cosmology can become even more acute at probing new physics related to neutrinos or even Beyond the Standard Model (BSM). Any discordance between laboratory and cosmological data sets may reveal new BSM physics and/or suggest alternative models of cosmology. We give examples of the intersection between terrestrial and cosmological probes in the neutrino sector, and briefly discuss the possibilities of what different laboratory experiments may see in conjunction with cosmological observatories.
Address [Gerbino, Martina; Lattanzi, Massimiliano; Brinckmann, Thejs] INFN, Sez Ferrara, I-44122 Ferrara, Italy, Email: gerbinom@fe.infn.it;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001112368600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 5854
Permanent link to this record
 

 
Author Wang, D.
Title Model-independent traversable wormholes from baryon acoustic oscillations Type Journal Article
Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 42 Issue Pages 101306 - 8pp
Keywords Traversable wormholes; Dark energy; Baryon acoustic oscillations
Abstract In this paper, we investigate the model-independent traversable wormholes from baryon acoustic oscillations. Firstly, we place the statistical constraints on the average dark energy equation of state Wav by only using BAO data. Subsequently, two specific wormhole solutions are obtained, i.e, the cases of the constant redshift function and a special choice for the shape function. For the first case, we analyze the traversabilities of the wormhole configuration, and for the second case, we find that one can construct theoretically a traversable wormhole with infinitesimal amounts of average null energy condition violating phantom fluid. Furthermore, we perform the stability analysis for the first case, and find that the stable equilibrium configurations may increase for increasing values of the throat radius of the wormhole in the cases of a positive and a negative surface energy density. It is worth noting that the obtained wormhole solutions are static and spherically symmetrical metric, and that we assume Wav to be a constant between different redshifts when placing constraints, hence, these wormhole solutions can be interpreted as stable and static phantom wormholes configurations at some certain redshift which lies in the range [0.32, 2.34].
Address [Wang, Deng] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46980 Paterna, Spain, Email: cstar@nao.cas.cn
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001122744700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 5853
Permanent link to this record
 

 
Author Pasqualato, G. et al; Domingo-Pardo, C.; Gadea, A.
Title Shape evolution in even-mass 98-104Zr isotopes via lifetime measurements using the γ γ-coincidence technique Type Journal Article
Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 59 Issue 11 Pages 276 - 13pp
Keywords
Abstract The Zirconium (Z = 40) isotopic chain has attracted interest for more than four decades. The abrupt lowering of the energy of the first 2(+) state and the increase in the transition strength B(E2; 2(1)(+) -> 0(1)(+) ) going from Zr-98 to Zr-100 has been the first example of “quantum phase transition” in nuclear shapes, which has few equivalents in the nuclear chart. Although a multitude of experiments have been performed to measure nuclear properties related to nuclear shapes and collectivity in the region, none of the measured lifetimes were obtained using the Recoil Distance Doppler Shift method in the gamma gamma-coincidence mode where a gate on the direct feeding transition of the state of interest allows a strict control of systematical errors. This work reports the results of lifetime measurements for the first yrast excited states in Zr98-104 carried out to extract reduced transition probabilities. The new lifetime values in gamma gamma-coincidence and gamma-single mode are compared with the results of former experiments. Recent predictions of the Interacting Boson Model with Configuration Mixing, the Symmetry Conserving Configuration Mixing model based on the Hartree-Fock- Bogoliubov approach and the Monte Carlo Shell Model are presented and compared with the experimental data.
Address [Pasqualato, G.; Ljungvall, J.; Georgiev, G.; Korichi, A.; Ralet, D.; Verney, D.] Univ Paris Saclay, CNRS, IN2P3, IJCLab, Orsay, France, Email: giorgia.pasqualato.1@gmail.com
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:001107209400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 5852
Permanent link to this record
 

 
Author Adolf, P.; Hirsch, M.; Päs, H.
Title Radiative neutrino masses and the Cohen-Kaplan-Nelson bound Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 078 - 14pp
Keywords Neutrino Mixing; Other Weak Scale BSM Models; Specific BSM Phenomenology
Abstract Recently, an increasing interest in UV/IR mixing phenomena has drawn attention to the range of validity of standard quantum field theory. Here we explore the consequences of such a limited range of validity in the context of radiative models for neutrino mass generation. We adopt an argument first published by Cohen, Kaplan and Nelson that gravity implies both UV and IR cutoffs, apply it to the loop integrals describing radiative corrections, and demonstrate that this effect has significant consequences for the parameter space of radiative neutrino mass models.
Address [Adolf, Patrick; Paes, Heinrich] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany, Email: patrick.adolf@tu-dortmund.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001120244000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 5851
Permanent link to this record