|   | 
Details
   web
Records
Author Sobczyk, J.E.; Rocco, N.; Nieves, J.
Title Polarization of tau in quasielastic (anti)neutrino scattering: The role of spectral functions Type Journal Article
Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 100 Issue 3 Pages 035501 - 14pp
Keywords
Abstract We present a study of the tau polarization in charged-current quasielastic (anti)neutrino-nucleus scattering. The spectral function formalism is used to compute the differential cross section and the polarization components for several kinematical setups, relevant for neutrino-oscillation experiments. The effects of the nuclear corrections in these observables are investigated by comparing the results obtained using two different realistic spectral functions, with those deduced from the relativistic global Fermi gas model, where only statistical correlations are accounted for. We show that the spectral functions, although they play an important role when predicting the differential cross sections, produce much less visible effects on the polarization components of the outgoing tau.
Address [Sobczyk, J. E.; Nieves, J.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, Inst Invest Paterna, Apartado 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000483582500009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 4126
Permanent link to this record
 

 
Author Arbelaez, C.; Helo, J.C.; Hirsch, M.
Title Long-lived heavy particles in neutrino mass models Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 5 Pages 055001 - 15pp
Keywords
Abstract All extensions of the standard model that generate Majorana neutrino masses at the electroweak scale introduce some heavy mediators, either fermions and/or scalars, weakly coupled to leptons. Here, by “heavy,” we mean implicitly the mass range between a few 100 GeV up to, say, roughly 2 TeV, such that these particles can be searched for at the LHC. We study decay widths of these mediators for several different tree-level neutrino mass models. The models we consider range from the simplest d = 5 seesaw up to d = 11 neutrino mass models. For each of the models, we identify the most interesting parts of the parameter space, where the heavy mediator fields are particularly long lived and can decay with experimentally measurable decay lengths. One has to distinguish two different scenarios, depending on whether fermions or scalars are the lighter of the heavy particles. For fermions, we find that the decay lengths correlate with the inverse of the overall neutrino mass scale. Thus, since no lower limit on the lightest neutrino mass exists, nearly arbitrarily long decay lengths can be obtained for the case in which fermions are the lighter of the heavy particles. For charged scalars, on the other hand, there exists a maximum value for the decay length in these models. This maximum value depends on the model and on the electric charge of the scalar under consideration but can at most be of the order of a few millimeters. Interestingly, independent of the model, this maximum occurs always in a region of parameter space, where leptonic and gauge boson final states have similar branching ratios, i.e., where the observation of lepton number-violating final states from scalar decays is possible.
Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000483583000006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 4127
Permanent link to this record
 

 
Author Tang, C.; Gao, F.; Liu, Y.X.
Title Practical scheme from QCD to phenomena via Dyson-Schwinger equations Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 5 Pages 056001 - 16pp
Keywords
Abstract We deliver a scheme to compute the quark propagator and the quark-gluon interaction vertex through the coupled Dyson-Schwinger equations (DSEs) of QCD. We take the three-gluon vertex into account in our calculations, and implement the gluon propagator and the running coupling function fitted by the solutions of their respective DSEs. We obtain the momentum and current mass dependence of the quark propagator and the quark-gluon vertex, and the chiral quark condensate that agrees with previous results excellently. We also compute the quark-photon vertex within this scheme and give the anomalous chromo- and electromagnetic moment of the quark. The obtained results are excellently consistent with previous ones. These applications manifest that the scheme is realistic and then practical for explaining the QCD-related phenomena.
Address [Tang, Can; Liu, Yu-xin] Peking Univ, Dept Phys, Beijing 100871, Peoples R China, Email: yxliu@pku.edu.cn
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000483583000008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 4128
Permanent link to this record
 

 
Author Fileviez Perez, P.; Murgui, C.; Plascencia, A.D.
Title Neutrino-dark matter connections in gauge theories Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 3 Pages 035041 - 14pp
Keywords
Abstract We discuss the connection between the origin of neutrino masses and the properties of dark matter candidates in the context of gauge extensions of the Standard Model. We investigate minimal gauge theories for neutrino masses where the neutrinos arc predicted to be Dirac or Majorana fermions. We find that the upper bound on the effective number of relativistic species provides a strong constraint in the scenarios with Dirac neutrinos. In the context of theories where the lepton number is a local gauge symmetry spontaneously broken at the low scale, the existence of dark matter is predicted from the condition of anomaly cancellation. Applying the cosmological bound on the dark matter relic density, we find an upper bound on the symmetry breaking scale in the multi-TeV region. These results imply that we could test simple gauge theories for neutrino masses at current or future experiments.
Address [Perez, Pavel Fileviez; Plascencia, Alexis D.] Case Western Reserve Univ, Phys Dept, Rockefeller Bldg,2076 Adelbert Rd, Cleveland, OH 44106 USA, Email: pxf112@case.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000483349300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 4129
Permanent link to this record
 

 
Author Nebot, M.; Botella, F.J.; Branco, G.C.
Title Vacuum induced CP violation generating a complex CKM matrix with controlled scalar FCNC Type Journal Article
Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 79 Issue 8 Pages 711 - 23pp
Keywords
Abstract We propose. a viable minimal model with spontaneous CP violation in the framework of a two Higgs doublet model. The model is based on a generalised Branco-Grimus-Lavoura model with a flavoured Z(2) symmetry, under which two of the quark families are even and the third one is odd. The lagrangian respects CP invariance, but the vacuum has a CP violating phase, which is able to generate a complex CKM matrix, with the rephasing invariant strength of CP violation compatible with experiment. The question of scalar mediated flavour changing neutral couplings is carefully studied. In particular we point out a deep connection between the generation of a complex CKM matrix from a vacuum phase and the appearance of scalar FCNC. The scalar sector is presented in detail, showing that the new scalars are necessarily lighter than 1 TeV. A complete analysis of the model including the most relevant constraints is performed, showing that it is viable and that it has definite implications for the observation of New Physics signals in, for example, flavour changing Higgs decays or the discovery of the new scalars at the LHC. We give special emphasis to processes like t -> hc, hu, as well as h -> bs, bd, which are relevant for the LHC and the ILC.
Address [Nebot, Miguel; Branco, Gustavo C.] UL, Dept Fis, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: miguel.r.nebot.gomez@tecnico.ulisboa.pt;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000483225300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 4130
Permanent link to this record