toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ATLAS Collaboration (Aad, G. et al); Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estañ, M.T.; Ros, E.; Salt, J.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.; Wildauer, A. url  doi
openurl 
  Title Search for Dilepton Resonances in pp Collisions at sqrt(s) = 7 TeV with the ATLAS Detector Type Journal Article
  Year 2011 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 107 Issue 27 Pages 272002 - 19pp  
  Keywords  
  Abstract This Letter reports on a search for narrow high-mass resonances decaying into dilepton final states. The data were recorded by the ATLAS experiment in pp collisions at sqrt(s) = 7 TeV at the Large Hadron Collider and correspond to a total integrated luminosity of 1.08 (1.21) fb(-1) in the e(+)e(-) (mu(+)mu(-)) channel. No statistically significant excess above the standard model expectation is observed and upper limits are set at the 95% C. L. on the cross section times branching fraction of Z' resonances and Randall-Sundrum gravitons decaying into dileptons as a function of the resonance mass. A lower mass limit of 1.83 TeV on the sequential standard model Z' boson is set. A Randall-Sundrum graviton with coupling k/(M) over bar Pl = 0.1 is excluded at 95% C. L. for masses below 1.63 TeV.  
  Address [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298611000012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial (down) 859  
Permanent link to this record
 

 
Author Agarwalla, S.K.; Blennow, M.; Fernandez-Martinez, E.; Mena, O. url  doi
openurl 
  Title Neutrino probes of the nature of light dark matter Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 004 - 19pp  
  Keywords dark matter experiments; neutrino detectors  
  Abstract Dark matter particles gravitationally trapped inside the Sun may annihilate into Standard Model particles, producing a flux of neutrinos. The prospects of detecting these neutrinos in future multi-kt neutrino detectors designed for other physics searches are explored here. We study the capabilities of a 34/100 kt liquid argon detector and a 100 kt magnetized iron calorimeter detector. These detectors are expected to determine the energy and the direction of the incoming neutrino with unprecedented precision allowing for tests of the dark matter nature at very low dark matter masses, in the range of 10-25 GeV. By suppressing the atmospheric background with angular cuts, these techniques would be sensitive to dark matter-nucleon spin-dependent cross sections at the fb level, reaching down to a few ab for the most favorable annihilation channels and detector technology.  
  Address [Agarwalla, Sanjib Kumar; Mena, Olga] Univ Politecn Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296767000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial (down) 858  
Permanent link to this record
 

 
Author Serenelli, A.M.; Haxton, W.C.; Pena-Garay, C. url  doi
openurl 
  Title Solar Models With Accretion. I. Application To The Solar Abundance Problem Type Journal Article
  Year 2011 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 743 Issue 1 Pages 24 - 20pp  
  Keywords accretion, accretion disks; neutrinos; Sun: abundances; Sun: helioseismology; Sun: interior  
  Abstract We generate new standard solar models using newly analyzed nuclear fusion cross sections and present results for helioseismic quantities and solar neutrino fluxes. The status of the solar abundance problem is discussed. We investigate whether nonstandard solar models with accretion from the protoplanetary disk might alleviate this problem. We examine a broad range of models, analyzing metal-enriched and metal-depleted accretion and three scenarios for the timing of accretion. Only partial solutions are found. Formetal-rich accreted material (Z(ac) greater than or similar to 0.018) there exist combinations of accreted mass and metallicity that bring the depth of the convective zone into agreement with the helioseismic value. For the surface helium abundance, the helioseismic value is reproduced if metal-poor or metal-free accretion is assumed (Z(ac) less than or similar to 0.09). In both cases a few percent of the solar mass must be accreted. Precise values depend on when accretion takes place. We do not find a simultaneous solution to both problems but speculate that changing the hydrogen-to-helium mass ratio in the accreted material may lead to more satisfactory solutions. We also show that, with current data, solar neutrinos are already a very competitive source of information about the solar core and can help constraining possible accretion histories. Even without helioseismic constraints, solar neutrinos rule out the possibility that more than 0.02 M(circle dot) from the protoplanetary disk were accreted after the Sun settled on the main sequence. Finally, we discuss how measurements of neutrinos from the CN cycle could shed light on the interaction between the early Sun and its protoplanetary disk.  
  Address [Serenelli, Aldo M.] Fac Ciencias, CSIC IEEC, Inst Ciencias Espacio, Bellaterra 08193, Spain  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000297408300024 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial (down) 857  
Permanent link to this record
 

 
Author Krauss, M.B.; Ota, T.; Porod, W.; Winter, W. url  doi
openurl 
  Title Neutrino mass from higher than d=5 effective operators in supersymmetry, and its test at the LHC Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 11 Pages 115023 - 14pp  
  Keywords  
  Abstract We discuss neutrino masses from higher than d = 5 effective operators in a supersymmetric framework, where we explicitly demonstrate which operators could be the leading contribution to neutrino mass in the minimal supersymmetric standard model and next to minimal supersymmetric standard model. As an example, we focus on the d = 7 operator LLH(u)H(u)H(d)H(u), for which we systematically derive all tree-level decompositions. We argue that many of these lead to a linear or inverse seesaw scenario with two extra neutral fermions, where the lepton number violating term is naturally suppressed by a heavy mass scale when the extra mediators are integrated out. We choose one example, for which we discuss possible implementations of the neutrino flavor structure. In addition, we show that the heavy mediators, in this case SU(2) doublet fermions, may indeed be observable at the LHC, since they can be produced by Drell-Yan processes and lead to displaced vertices when they decay. However, the direct observation of lepton number violating processes is on the edge at LHC.  
  Address [Krauss, Martin B.; Porod, Werner; Winter, Walter] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: martin.krauss@physik.uni-wuerzburg.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298642900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial (down) 856  
Permanent link to this record
 

 
Author Fornengo, N.; Lineros, R.A.; Regis, M.; Taoso, M. url  doi
openurl 
  Title Possibility of a Dark Matter Interpretation for the Excess in Isotropic Radio Emission Reported by ARCADE Type Journal Article
  Year 2011 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 107 Issue 27 Pages 271302 - 5pp  
  Keywords  
  Abstract The ARCADE 2 Collaboration has recently measured an isotropic radio emission which is significantly brighter than the expected contributions from known extra-galactic sources. The simplest explanation of such excess involves a "new'' population of unresolved sources which become the most numerous at very low (observationally unreached) brightness. We investigate this scenario in terms of synchrotron radiation induced by weakly interacting massive particle (WIMP) annihilations or decays in extra-galactic halos. Intriguingly, for light-mass WIMPs with a thermal annihilation cross section, the level of expected radio emission matches the ARCADE observations.  
  Address [Fornengo, N.; Regis, M.] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298611000009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial (down) 855  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva