|   | 
Details
   web
Records
Author Rocha-Moran, P.; Vicente, A.
Title Lepton Flavor Violation in the singlet-triplet scotogenic model Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 078 - 25pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract We investigate lepton flavor violation (LFV) in the the singlet-triplet scotogenic model in which neutrinos acquire non-zero masses at the 1-loop level. In contrast to the most popular variant of this setup, the singlet scotogenic model, this version includes a triplet fermion as well as a triplet scalar, leading to a scenario with a richer dark matter phenomenology. Taking into account results from neutrino oscillation experiments, we explore some aspects of the LFV phenomenology of the model. In particular, we study the relative weight of the dipole operators with respect to other contributions to the LFV amplitudes and determine the most constraining observables. We show that in large portions of the parameter space, the most promising experimental perspectives are found for LFV 3-body decays and for coherent mu-e conversion in nuclei.
Address [Rocha-Moran, Paulina; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, Apdo 22085, E-46071 Valencia, Spain, Email: procha@th.physik.uni-bonn.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000411315600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 3500
Permanent link to this record
 

 
Author Flores-Tlalpa, A.; Lopez Castro, G.; Roig, P.
Title Five-body leptonic decays of muon and tau lepton Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 185 - 21pp
Keywords CP violation; Discrete Symmetries; Effective field theories; Precision QED
Abstract We study the five-body decays u(-) -> e(-)e(+)e(-)nu u (nu) over bar (e) and tau(-) -> l(-)l'+l'-nu(tau)(nu) over bar (l) for l, l' = e, u within the Standard Model (SM) and in a general effective field theory description of the weak interactions at low energies. We compute the branching ratios and compare our results with two previous – mutually discrepan – SM calculations. By assuming a general structure for the weak currents we derive the expressions for the energy and angular distributions of the three charged leptons when the decaying lepton is polarized, which will be useful in precise tests of the weak charged current at Belle II. In these decays, leptonic T-odd correlations in triple products of spin and momenta – which may signal time reversal violation in the leptonic sector – are suppressed by the tiny neutrino masses. Therefore, a measurement of such T-violating observables would be associated to neutrinoless lepton flavor violating (LFV) decays, where this effect is not extremely suppressed. We also study the backgrounds that the SM five-lepton lepton decays constitute to searches of LFV L- -> ? l(-)l'+l'(-) decays. Searches at high values of the invariant mass of the l'(+)l'(-) pair look the most convenient way to overcome the background.
Address [Flores-Tlalpa, A.] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico, Email: alain@fisica.unam.mx;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000411265800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 3501
Permanent link to this record
 

 
Author Farzan, Y.; Tortola, M.
Title Neutrino oscillations and non-standard Interactions Type Journal Article
Year 2018 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 6 Issue Pages 10 - 34pp
Keywords neutrino oscillations; leptonic CP violation; non-standard neutrino interactions; neutrino masses; neutrino physics
Abstract Current neutrino experiments are measuring the neutrino mixing parameters with an unprecedented accuracy. The upcoming generation of neutrino experiments will be sensitive to subdominant neutrino oscillation effects that can in principle give information on the yet-unknown neutrino parameters: the Dirac CP-violating phase in the PMNS mixing matrix, the neutrino mass ordering and the octant of.23. Determining the exact values of neutrino mass and mixing parameters is crucial to test various neutrino models and flavor symmetries that are designed to predict these neutrino parameters. In the first part of this review, we summarize the current status of the neutrino oscillation parameter determination. We consider the most recent data from all solar neutrino experiments and the atmospheric neutrino data from Super-Kamiokande, IceCube, and ANTARES. We also implement the data from the reactor neutrino experiments KamLAND, Daya Bay, RENO, and Double Chooz as well as the long baseline neutrino data from MINOS, T2K, and NO.A. If in addition to the standard interactions, neutrinos have subdominant yet-unknown Non-Standard Interactions (NSI) with matter fields, extracting the values of these parameters will suffer from new degeneracies and ambiguities. We review such effects and formulate the conditions on the NSI parameters under which the precision measurement of neutrino oscillation parameters can be distorted. Like standard weak interactions, the non-standard interaction can be categorized into two groups: Charged Current (CC) NSI and Neutral Current (NC) NSI. Our focus will bemainly on neutral current NSI because it is possible to build a class of models that give rise to sizeable NC NSI with discernible effects on neutrino oscillation. These models are based on new U(1) gauge symmetry with a gauge boson of mass. 10 MeV. The UV complete model should be of course electroweak invariant which in general implies that along with neutrinos, charged fermions also acquire new interactions on which there are strong bounds. We enumerate the bounds that already exist on the electroweak symmetric models and demonstrate that it is possible to build viable models avoiding all these bounds. In the end, we review methods to test these models and suggest approaches to break the degeneracies in deriving neutrino mass parameters caused by NSI.
Address [Farzan, Yasaman] Inst Res Fundamental Sci, Sch Phys, Tehran, Iran, Email: mariam@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Research Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000426198100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 3502
Permanent link to this record
 

 
Author Bernreuther, W.; Chen, L.; Garcia, I.; Perello, M.; Poeschl, R.; Richard, F.; Ros, E.; Vos, M.
Title CP-violating top quark couplings at future linear e+e- colliders Type Journal Article
Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 78 Issue 2 Pages 155 - 21pp
Keywords
Abstract We study the potential of future lepton colliders to probe violation of the CP symmetry in the top quark sector. In certain extensions of the Standard Model, such as the two-Higgs-doublet model (2HDM), sizeable anomalous top quark dipole moments can arise, which may be revealed by a precise measurement of top quark pair production. We present results from detailed Monte Carlo studies for the ILC at 500 GeV and CLIC at 380 GeV and use parton-level simulations to explore the potential of high-energy operation. We find that precise measurements in e(+)e(-) -> t (t) over bar production with subsequent decay to lepton plus jets final states can provide sufficient sensitivity to detect Higgs-boson-induced CP violation in a viable two-Higgs-doublet model. The potential of a linear e(+)e(-) collider to detect CP-violating electric and weak dipole form factors of the top quark exceeds the prospects of the HL-LHC by over an order of magnitude.
Address [Bernreuther, W.; Chen, L.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany, Email: ignacio.garcia@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000426403400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 3503
Permanent link to this record
 

 
Author Correia, F.C.
Title Fundamentals of the 3-3-1 model with heavy leptons Type Journal Article
Year 2018 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 45 Issue 4 Pages 043001 - 31pp
Keywords 3-3-1 models; heavy leptons; heavy quarks
Abstract This work is a brief presentation of the theory based on the SU(3)(c) circle times SU(3)(L) circle times U(1)(X) gauge group in the presence of heavy leptons. Recent studies [1] have considered a set of four possible variants for the 3-3-1HL, whose content arises according to the so-denoted variable beta. Since it has been argued about the presence of stable charged particles in this sort of model, we divide the different sectors of the Lagrangian between universal and specific vertices, and conclude that the omission of beta-dependent terms in the potential may induce discrete symmetry for the versions defined by vertical bar beta vertical bar = root 3 . In the context of vertical bar beta vertical bar = 1/root 3, where the new degrees of freedom have the same standard electric charges, additional Yukawa interactions may create decay channels into the SM sector. Furthermore, motivated by a general consequence of the Goldstone theorem, a method of diagonalization by parts is introduced in the Scalar sector and provides a clarification on the definition of mass eigenstates. In summary, we develop the most complete set of terms allowed by the symmetry group and resolve their definitive pieces in order to justify the model description present in the literature.
Address [Correia, F. C.] Sao Paulo State Univ, UNESP, Inst Theoret Phys, BR-01140070 Sao Paulo, SP, Brazil, Email: ccorreia@ift.unesp.br
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000425634400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 3504
Permanent link to this record