|   | 
Details
   web
Records
Author Bulava, J.; Della Morte, M.; Heitger, J.; Wittemeier, C.
Title Nonperturbative renormalization of the axial current in N-f=3 lattice QCD with Wilson fermions and a tree-level improved gauge action Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue 11 Pages 114513 - 7pp
Keywords
Abstract We nonperturbatively determine the renormalization factor of the axial vector current in lattice QCD with N-f = 3 flavors of Wilson-clover fermions and the tree-level Symanzik-improved gauge action. The (by now standard) renormalization condition is derived from the massive axial Ward identity, and it is imposed among Schrodinger functional states with large overlap on the lowest lying hadronic state in the pseudoscalar channel, in order to reduce kinematically enhanced cutoff effects. We explore a range of couplings relevant for simulations at lattice spacings of approximate to 0.09 fm and below. An interpolation formula for Z(A)(g(0)(2)) , smoothly connecting the nonperturbative values to the 1-loop expression, is provided together with our final results.
Address [Bulava, John] Univ Dublin Trinity Coll, Sch Math, Dublin 2, Ireland
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000378203800011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 2733
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title First Observation of D-0 – (D)over-bar(0) Oscillations in D-0 -> K+pi(-)pi(+)pi(-) Decays and Measurement of the Associated Coherence Parameters Type Journal Article
Year 2016 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 116 Issue 24 Pages 241801 - 10pp
Keywords
Abstract Charm meson oscillations are observed in a time-dependent analysis of the ratio of D-0 -> K+pi(-)pi(+)pi(-) to D-0 -> K-pi(+)pi(-)pi(+) decay rates, using data corresponding to an integrated luminosity of 3.0 fb(-1) recorded by the LHCb experiment. The measurements presented are sensitive to the phase-space averaged ratio of doubly Cabibbo-suppressed to Cabibbo-favored amplitudes r(D)(K3 pi) and the product of the coherence factor R-D(K3 pi) and a charm mixing parameter y'(K3 pi). The constraints measured are r(D)(K3 pi) = (5.67 +/- 0.12) x 10(-2), which is the most precise determination to date, and R-D(K3 pi) y'(K3 pi) = (0.3 +/- 1.8) x 10(-3), which provides useful input for determinations of the CP-violating phase gamma in B-+/- -> DK +/-, D -> K--/+pi(+/-)pi(-/+)pi(+/-) decays. The analysis also gives the most precise measurement of the D-0 -> K+pi(-)pi(+)pi(-) branching fraction, and the first observation of D-0-(D) over bar (0) oscillations in this decay mode, with a significance of 8.2 standard deviations.
Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Osorio Rodrigues, B.; Dos Reis, A. C.; Rodrigues, A. B.; Tomassetti, L.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000378059500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 2734
Permanent link to this record
 

 
Author Liddick, S.N.; Spyrou, A.; Crider, B.P.; Naqvi, F.; Larsen, A.C.; Guttormsen, M.; Mumpower, M.; Surman, R.; Perdikakis, G.; Bleuel, D.L.; Couture, A.; Campo, L.C.; Dombos, A.C.; Lewis, R.; Mosby, S.; Nikas, S.; Prokop, C.J.; Renstrom, T.; Rubio, B.; Siem, S.; Quinn, S.J.
Title Experimental Neutron Capture Rate Constraint Far from Stability Type Journal Article
Year 2016 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 116 Issue 24 Pages 242502 - 6pp
Keywords
Abstract Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on Ni-69, a nucleus that is five neutrons away from the last stable isotope of Ni. The implications of this measurement on nucleosynthesis around mass 70 are discussed, and the impact of similar future measurements on the understanding of the origin of the heavy elements in the cosmos is presented.
Address [Liddick, S. N.; Spyrou, A.; Crider, B. P.; Naqvi, F.; Perdikakis, G.; Dombos, A. C.; Lewis, R.; Prokop, C. J.; Quinn, S. J.] Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000378058700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 2735
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Mitsou, V.A.; Pedraza Lopez, S.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title A search for top squarks with R-parity-violating decays to all-hadronic final states with the ATLAS detector in root s=8 TeV proton-proton collisions Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 067 - 49pp
Keywords Hadron-Hadron scattering (experiments)
Abstract A search for the pair production of top squarks, each with R-parity-violating decays into two Standard Model quarks, is performed using 17.4 fb(-1) of root s = 8 TeV proton-proton collision data recorded by the ATLAS experiment at the LITC. Each top squark is assumed to decay to a b- and an 8-quark, leading to four quarks in the final state. Background discrimination is achieved with the use of b-tagging and selections on the mass and substructure of large-radius jets, providing sensitivity to top squark masses as low as 100 GeV. No evidence of an excess beyond the Standard Model background prediction is observed and top squalls decaying to bs are excluded for top squark masses in the range 100 <= m((t) over tilde) <= 315 GeV at 95% confidence level.
Address [Jackson, P.; Lee, L.; Petridis, A.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000377999700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 2736
Permanent link to this record
 

 
Author Gomis, P.; Perez, A.
Title Decoherence effects in the Stern-Gerlach experiment using matrix Wigner functions Type Journal Article
Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume 94 Issue 1 Pages 012103 - 11pp
Keywords
Abstract We analyze the Stern-Gerlach experiment in phase space with the help of the matrix Wigner function, which includes the spin degree of freedom. Such analysis allows for an intuitive visualization of the quantum dynamics of the device. We include the interaction with the environment, as described by the Caldeira-Leggett model. The diagonal terms of the matrix provide us with information about the two components of the state that arise from interaction with the magnetic field gradient. In particular, from the marginals of these components, we obtain an analytical formula for the position and momentum probability distributions in the presence of decoherence that shows a diffusive behavior for large values of the decoherence parameter. These features limit the dynamics of the present model. We also observe the decay of the nondiagonal terms with time and use this fact to quantify the amount of decoherence from the norm of those terms in phase space. From here, we can define a decoherence time scale, which differs from previous results that make use of the same model. We analyze a typical experiment and show that, for that setup, the decoherence time is much smaller than the characteristic time scale for the separation of the two beams, implying that they can be described as an incoherent mixture of atoms traveling in the up and down directions with opposite values of the spin projection. Therefore, entanglement is quickly destroyed in the setup we analyzed.
Address [Gomis, P.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: Pablo.Gomis@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000378909000003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial (up) 2739
Permanent link to this record