|   | 
Details
   web
Records
Author n_TOF Collaboration (Paradela, C. et al); Domingo-Pardo, C.; Plag, R.; Plompen, A.; Tain, J.L.
Title (237)Np(n,f) Cross Section: New Data and Present Status Type Journal Article
Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.
Volume 59 Issue 2 Pages 1908-1911
Keywords Nuclear data; Neutron-induced fission reactions; Np-237; n_TOF experiment
Abstract In this document, we present the final result obtained at the nTOF experiment; for the neutron-induced fission cross section of the (237)Np, from the fission threshold up to 1 GeV. The method applied to get tins result is briefly discussed. nTOF data are compared to the last experimental measurements using other TOF facilities or the surrogate method, reported experiments performed with monoenergetic sources and the FISCAL systematic, including a discussion about the existing discrepancies.
Address [Paradela, C] Univ Santiago de Compostela, Fac Fis, Santiago De Compostela 15782, Spain, Email: carlos.paradela@usc.es
Corporate Author Thesis
Publisher Korean Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0374-4884 ISBN Medium
Area Expedition Conference
Notes WOS:000294080700110 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial (up) 740
Permanent link to this record
 

 
Author n_TOF Collaboration (Calviani, M. et al); Domingo-Pardo, C.; Tain, J.L.
Title Fission Cross-section Measurements of (233)U, (245)Cm and (241,243)Am at CERN n_TOF Facility Type Journal Article
Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.
Volume 59 Issue 2 Pages 1912-1915
Keywords ND2010; Nuclear data; ENDF; n_TOF; Neutron-induced fission reactions; Am; Cm; U
Abstract Neutron-induced fission cross-sections of minor actinides have been measured using the nTOF white neutron source at CERN. Geneva, as part of a large experimental program aiming at collecting new data relevant for nuclear astrophysics and for the design of advanced reactor systems. The measurements at nTOF take advantage of the innovative features of the n_TOF facility, namely the wide energy range, high instantaneous neutron flux and good energy resolution. Final results on the fission cross-section of (233)U, (245)cm and (243)Am from thermal to 20 MeV are here reported, together with preliminary results for (241)Am. The measurement have been performed with a dedicated Fast Ionization Chamber (FIC), a fission fragment detector with a very high efficiency, relative to the very well known cross-section of (235)U, measured simultaneously with the same detector.
Address [Calviani, M; Andriamonje, S; Chiaveri, E; Vlachoudis, V] CERN, Geneva, Switzerland, Email: marco.calviani@cern.ch
Corporate Author Thesis
Publisher Korean Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0374-4884 ISBN Medium
Area Expedition Conference
Notes WOS:000294080700111 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial (up) 741
Permanent link to this record
 

 
Author n_TOF Collaboration; Kappeler, F.; Mengoni, A.; Mosconi, M.; Fujii, K.; Heil, M.; Domingo-Pardo, C.
Title Neutron Studies for Dating the Universe Type Journal Article
Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.
Volume 59 Issue 2 Pages 2094-2099
Keywords Neutron capture and inelastic scattering cross sections; Re/Os cosmo-chronometer
Abstract The neutron capture cross sections of (186)Os and (187)Os are of key importance for defining the 8-process abundance of (187)Os at the formation of the solar system. This quantity can be used to determine the radiogenic abundance component of (187)Os from the decay of (187)Re (t(1/2) = 41.2 Gyr) and to infer the time-duration of the nucleosynthesis in our galaxy (Re/Os cosmochronometer). The neutron capture cross sections of (186)Os, (187)Os, and (188)Os have been measured at the CERN nTOF facility from 1 eV to 1 MeV, covering the entire energy range of astrophysical interest. From these data Maxwellian averaged capture cross sections have been calculated with uncertainties between 3.3 and 4.7%. Additional information was obtained by measuring the inelastic scattering cross section of (187)Os at the Karlsruhe 3.7 MV Van de Graaff accelerator and by neutron resonance analyses of the nTOF capture data to establish a comprehensive experimental basis for the Hauser-Feshbach statistical model. Consistent I-IF calculations for the capture and inelastic reaction channels were performed to determine the stellar enhancement factors, which are required to correct the Maxwellian averaged cross sections for the effect of thermally populated excited states. The consequences of this analysis for the s-process component of the (187)Os abundance and the related impact on the evaluation of the time-duration of Galactic nucleosynthesis via the Re/Os cosmo-chronometer are discussed.
Address [Kappeler, F] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany, Email: franz.kaeppeler@kit.edu
Corporate Author Thesis
Publisher Korean Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0374-4884 ISBN Medium
Area Expedition Conference
Notes WOS:000294080700156 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial (up) 742
Permanent link to this record
 

 
Author n_TOF Collaboration (Giubrone, G. et al); Tain, J.L.
Title The Role of Fe and Ni for S-process Nucleosynthesis and Innovative Nuclear Technologies Type Journal Article
Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.
Volume 59 Issue 2 Pages 2106-2109
Keywords Neutron capture cross sections; Neutron time of flight facility; C(6)D(6) detectors; Pulse height weighting technique; Nuclear astrophysics; Advanced nuclear systems
Abstract The accurate measurement of neutron capture cross sections of all Fe and Ni isotopes is important for disentangling the contribution of the s-process and the r-process to the stellar nucleosynthesis of elements in the mass range 60 < A < 120. At the same time, Fe and Ni are important components of structural materials and improved neutron cross section data is relevant in the design of new nuclear systems. With the aim of obtaining improved capture data on all stable iron and nickel isotopes, a program of measurements has been launched at the CERN Neutron Time of Flight Facility n_TOF.
Address [Giubrone, G; Tain, JL] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46003 Valencia, Spain, Email: tain@ific.uv.es
Corporate Author Thesis
Publisher Korean Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0374-4884 ISBN Medium
Area Expedition Conference
Notes WOS:000294080700158 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial (up) 743
Permanent link to this record
 

 
Author ATLAS Collaboration (Abat, E. et al); Bernabeu Verdu, J.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Garcia, C.; Gonzalez-Sevilla, S.; Higon-Rodriguez, E.; Lacasta, C.; Marti-Garcia, S.; Mitsou, V.A.; Ruiz, A.; Solans, C.; Valero, A.; Valls Ferrer, J.A.
Title A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test Type Journal Article
Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 6 Issue Pages P06001 - 35pp
Keywords Calorimeter methods; Pattern recognition, cluster finding, calibration and fitting methods; Calorimeters; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)
Abstract A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 GeV and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.
Address [Wheeler, S] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada[Bernabeu, J; Castillo, MV; Costa, MJ; Escobar, C; Ferrer, A; Garcia, C; Gonzalez-Sevilla, S; Higon, E; Lacasta, C; Garcia, SMI; Mitsou, VA; Ruiz, A; Solans, C; Valero, A; Valls, JA] Ctr Mixto UVEG CSIC, Inst Fis Corpuscular IFIC, ES-46071 Valencia, Spain, Email: kjg@particle.kth.se
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000294492600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial (up) 744
Permanent link to this record