|   | 
Details
   web
Records
Author Hafner, G. et al; Algora, A.
Title First lifetime investigations of N > 82 iodine isotopes: The quest for collectivity Type Journal Article
Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 104 Issue 1 Pages 014316 - 18pp
Keywords
Abstract We report on spectroscopic information and lifetime measurements in the neutron-rich I-135,I-137,I-139 isotopes. This is the first lifetime data on iodine isotopes beyond N = 82. Excited states were populated in fast neutron-induced fission of U-238 at the ALTO facility of IJCLab with the LICORNE neutron source and detected using the hybrid nu-ball spectrometer. The level schemes of the I-135,I-137,I-139 isotopes are revised in terms of excited states with up to maximum spin-parity of (33/2(+)), populated for the first time in fast neutron-induced fission. We provide first results on the lifetimes of the (9/2(1)(+)) and (13/2(1)(+)) states in I-137 and I-139, and the (17/2(1)(+)) state in 137I. In addition, we give upper lifetime limits for the (11/2(1)(+)) states in I135-139, the (15/2(1)(+)) state in I-137, the (17/2(1)(+)) state in I-139, and reexamine the (29/2(1)(+)) state in I-137. The isomeric data in I-13(5) are reinvestigated, such as the previously known (15/2(1)(+)) and (23/21) isomers with T-1/2 of 1.64(14) and 4.6(7) ns, respectively, as obtained in this work. The new spectroscopic information is compared to that from spontaneous or thermal-neutron induced fission and discussed in the context of large scale shell-model (LSSM) calculations for the region beyond Sn-132, indicating the behavior of collectivity for the three valence-proton iodine chain with N = 82, 84, 86.
Address [Haefner, G.; Lozeva, R.; Lebois, M.; Jovancevic, N.; Thisse, D.; Wilson, J. N.; Babo, M.; Chakma, R.; Delafosse, C.; Hauschild, K.; Ibrahim, F.; Nemer, J.; Popovitch, Y.; Qi, L.; Ralet, D.; Tocabens, G.; Verney, D.] Univ Paris Saclay, IJCLab, CNRS IN2P3, F-91405 Orsay, France, Email: radomira.lozeva@ijclab.in2p3.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000674546900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 4913
Permanent link to this record
 

 
Author Giare, W.; Di Valentino, E.; Melchiorri, A.; Mena, O.
Title New cosmological bounds on hot relics: axions and neutrinos Type Journal Article
Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 505 Issue 2 Pages 2703-2711
Keywords cosmic background radiation; cosmological parameters; dark matter; early Universe; cosmology: observations
Abstract Axions, if realized in nature, can be copiously produced in the early universe via thermal processes, contributing to the mass-energy density of thermal hot relics. In light of the most recent cosmological observations, we analyse two different thermal processes within a realistic mixed hot dark matter scenario which includes also massive neutrinos. Considering the axion-gluon thermalization channel, we derive our most constraining bounds on the hot relic masses m(a) < 7.46 eV and Sigma m(nu) < 0.114 eV both at 95 percent CL; while studying the axion-pion scattering, without assuming any specific model for the axion-pion interactions, and remaining in the range of validity of the chiral perturbation theory, our most constraining bounds are improved to m(a) < 0.91 eV and Sigma m(nu) < 0.105 eV, both at 95 percent CL. Interestingly, in both cases, the total neutrino mass lies very close to the inverted neutrino mass ordering prediction. If future terrestrial double beta decay and/or long-baseline neutrino experiments find that the nature mass ordering is the inverted one, this could rule out a wide region in the currently allowed thermal axion window. Our results therefore, strongly support multi messenger searches of axions and neutrino properties, together with joint analyses of their expected sensitivities.
Address [Giare, William; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: william.giare@gmail.com
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000672803400085 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 4912
Permanent link to this record
 

 
Author Escrihuela, F.J.; Flores, L.J.; Miranda, O.G.; Rendon, J.
Title Global constraints on neutral-current generalized neutrino interactions Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 061 - 26pp
Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics
Abstract We study generalized neutrino interactions (GNI) for several neutrino processes, including neutrinos from electron-positron collisions, neutrino-electron scattering, and neutrino deep inelastic scattering. We constrain scalar, pseudoscalar, and tensor new physics effective couplings, based on the standard model effective field theory at low energies. We have performed a global analysis for the different effective couplings. We also present the different individual constraints for each effective parameter (scalar, pseudoscalar, and tensor). Being a global analysis, we show robust results for the restrictions on the different GNI parameters and improve some of these bounds.
Address [Escrihuela, F. J.] Univ Valencia, Inst Fis Corpuscular CSIC, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000675383900009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 4911
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J.
Title Linear response theory with finite-range interactions Type Journal Article
Year 2021 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.
Volume 120 Issue Pages 103870 - 55pp
Keywords Linear response theory; Finite-range interactions; Gogny and Nakada interactions; Finite size instabilities; Continued fraction approximation; Multipolar expansion
Abstract This review focuses on the calculation of infinite nuclear matter response functions using phenomenological finite-range interactions, equipped or not with tensor terms. These include Gogny and Nakada families, which are commonly used in the literature. Because of the finite-range, the main technical difficulty stems from the exchange terms of the particle-hole interaction. We first present results based on the so-called Landau and Landau-like approximations of the particle-hole interaction. Then, we review two methods which in principle provide numerically exact response functions. The first one is based on a multipolar expansion of both the particle-hole interaction and the particle-hole propagator and the second one consists in a continued fraction expansion of the response function. The numerical precision can be pushed to any degree of accuracy, but it is actually shown that two or three terms suffice to get converged results. Finally, we apply the formalism to the determination of possible finite-size instabilities induced by a finite-range interaction.
Address [Davesne, D.] Univ Lyon, F-69003 Lyon, France, Email: alessandro.pastore@york.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-6410 ISBN Medium
Area Expedition Conference
Notes WOS:000674530100008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 4910
Permanent link to this record
 

 
Author Fioresi, R.; Lledo, M.A.
Title Quantum Supertwistors Type Journal Article
Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 13 Issue 7 Pages 1241 - 16pp
Keywords star products; superspace; non-commutative spacetime; quantum groups; quantum supergroups
Abstract In this paper, we give an explicit expression for a star product on the super-Minkowski space written in the supertwistor formalism. The big cell of the super-Grassmannian Gr(2|0,4|1) is identified with the chiral, super-Minkowski space. The super-Grassmannian is a homogeneous space under the action of the complexification SL(4|1) of SU(2,2|1), the superconformal group in dimension 4, signature (1,3), and supersymmetry N=1. The quantization is done by substituting the groups and homogeneous spaces by their quantum deformed counterparts. The calculations are done in Manin's formalism. When we restrict to the big cell, we can explicitly compute an expression for the super-star product in the Minkowski superspace associated to this deformation and the choice of a certain basis of monomials.
Address [Fioresi, Rita] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy, Email: fioresi@dm.unibo.it;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000677165600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 4909
Permanent link to this record