|   | 
Details
   web
Records
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Measurement of the inclusive and fiducial t(t)over-bar production cross-sections in the lepton plus jets channel in pp collisions at root s=8 TeV with the ATLAS detector Type Journal Article
Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 78 Issue 6 Pages 487 - 31pp
Keywords
Abstract The inclusive and fiducial t (t) over bar production cross sections are measured in the lepton+jets channel using 20.2 fb(-1) of proton proton collision data at a centre-of mass energy of 8 TeV recorded with the ATLAS detector at the LHC. Major systematic uncertainties due to the modelling of the jet energy scale and b-tagging efficiency are constrained by separating selected events into three disjoint regions. In order to reduce systematic uncertainties in the most important background, the W+jets process is modelled using Z+jets events in a data-driven approach. The inclusive t (t) over bar cross-section is measured with a precision of 5.7% to be (sigma(inc) (t (t) over bar) = 248.3 +/- 0.7 (stat.) +/- 13.4 (syst.) +/- 4.7 (lumi.) pb, assuming a top-quark mass of 172.5 GeV. The result is in agreement with the Standard Model prediction. The cross-section is also measured in a phase space close to that of the selected data. The fiducial cross-section is sigma(fid) (t (t) over bar) = 48.8 +/- 0.1 (stat.) +/- 2.0 (syst.) +/- 0.9 (lumi.) pb with a precision of 4.5%.
Address [Duvnjak, D.; Jackson, P.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000435153700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 3621
Permanent link to this record
 

 
Author Reig, M.; Restrepo, D.; Valle, J.W.F.; Zapata, O.
Title Bound-state dark matter and Dirac neutrino masses Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 11 Pages 115032 - 5pp
Keywords
Abstract We propose a simple theory for the idea that cosmological dark matter (DM) may be present today mainly in the form of stable neutral hadronic thermal relics. In our model, neutrino masses arise radiatively from the exchange of colored DM constituents, giving a common origin for both dark matter and neutrino mass. The exact conservation of B – L symmetry ensures dark matter stability and the Dirac nature of neutrinos. The theory can be falsified by dark matter nuclear recoil direct detection experiments, leading also to possible signals at a next generation hadron collider.
Address [Reig, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mario.reig@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000435548100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 3622
Permanent link to this record
 

 
Author Ferreiro, A.; Navarro-Salas, J.
Title Pair creation in electric fields, anomalies, and renormalization of the electric current Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 12 Pages 125012 - 13pp
Keywords
Abstract We investigate the Schwinger pair production phenomena in spatially homogeneous strong electric fields. We first consider scalar QED in four-dimensions and discuss the potential ambiguity in the adiabatic order assignment for the electromagnetic potential required to fix the renormalization subtractions. We argue that this ambiguity can be solved by invoking the conformal anomaly when both electric and gravitational backgrounds are present. We also extend the adiabatic regularization method for spinor QED in two-dimensions and find consistency with the chiral anomaly. We focus on the issue of the renormalization of the electric current < j(mu)> generated by the created pairs. We illustrate how to implement the renormalization of the electric current for the Sauter pulse.
Address [Ferreiro, Antonio; Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC,Fac Fis, E-46100 Valencia, Spain, Email: antonio.ferreiro@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000435335000014 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial (up) 3623
Permanent link to this record
 

 
Author Arrighi, P.; Di Molfetta, G.; Marquez-Martin, I.; Perez, A.
Title Dirac equation as a quantum walk over the honeycomb and triangular lattices Type Journal Article
Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume 97 Issue 6 Pages 062111 - 5pp
Keywords
Abstract A discrete-time quantum walk (QW) is essentially an operator driving the evolution of a single particle on the lattice, through local unitaries. Some QWs admit a continuum limit, leading to well-known physics partial differential equations, such as the Dirac equation. We show that these simulation results need not rely on the grid: the Dirac equation in (2 + 1) dimensions can also be simulated, through local unitaries, on the honeycomb or the triangular lattice, both of interest in the study of quantum propagation on the nonrectangular grids, as in graphene-like materials. The latter, in particular, we argue, opens the door for a generalization of the Dirac equation to arbitrary discrete surfaces.
Address [Arrighi, Pablo; Di Molfetta, Giuseppe; Marquez-Martin, Ivan] Aix Marseille Univ, Univ Toulon, LIS, CNRS, Marseille, France, Email: pablo.arrighi@univ-amu.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000435076800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 3624
Permanent link to this record
 

 
Author Di Molfetta, G.; Soares-Pinto, D.O.; Duarte Queiros, S.M.
Title Elephant quantum walk Type Journal Article
Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume 97 Issue 6 Pages 062112 - 6pp
Keywords
Abstract We introduce an analytically treatable discrete time quantum walk in a one-dimensional lattice which combines non-Markovianity and hyperballistic diffusion associated with a Gaussian whose variance sigma(2)(t) grows cubicly with time sigma alpha t(3). These properties have have been numerically found in several systems, namely, tight-binding lattice models. For its rules, our model can be understood as the quantum version of the classical non-Markovian “elephant random walk” process for which the quantum coin operator only changes the value of the diffusion constant although, contrarily, to the classical coin.
Address [Di Molfetta, Giuseppe] Univ Toulon & Var, Aix Marseille Univ, Nat Computat Res Grp, CNRS,LIS, Marseille, France, Email: giuseppe.dimolfetta@lis-lab.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000435076800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 3625
Permanent link to this record