toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Toubiana, A.; Sberna, L.; Caputo, A.; Cusin, G.; Marsat, S.; Jani, K.; Babak, S.; Barausse, E.; Caprini, C.; Pani, P.; Sesana, A.; Tamanini, N. url  doi
openurl 
  Title Detectable Environmental Effects in GW190521-like Black-Hole Binaries with LISA Type Journal Article
  Year 2021 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 126 Issue 10 Pages 101105 - 6pp  
  Keywords  
  Abstract GW190521 is the compact binary with the largest masses observed to date, with at least one black hole in the pair-instability gap. This event has also been claimed to be associated with an optical flare observed by the Zwicky Transient Facility in an active galactic nucleus (AGN), possibly due to the postmerger motion of the merger remnant in the AGN gaseous disk. The Laser Interferometer Space Antenna (LISA) may detect up to ten such gas-rich black-hole binaries months to years before their detection by Laser Interferometer Gravitational Wave Observatory or Virgo-like interferometers, localizing them in the sky within approximate to 1 degrees(2). LISA will also measure directly deviations from purely vacuum and stationary waveforms arising from gas accretion, dynamical friction, and orbital motion around the AGN's massive black hole (acceleration, strong lensing, and Doppler modulation). LISA will therefore be crucial to enable us to point electromagnetic telescopes ahead of time toward this novel class of gas-rich sources, to gain direct insight on their physics, and to disentangle environmental effects from corrections to general relativity that may also appear in the waveforms at low frequencies.  
  Address [Toubiana, Alexandre; Marsat, Sylvain; Babak, Stanislav; Caprini, Chiara] Univ Paris, CNRS, AstroParticule & Cosmol, APC, F-75013 Paris, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000652824700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (up) 4846  
Permanent link to this record
 

 
Author Valdes-Cortez, C.; Mansour, I.; Rivard, M.J.; Ballester, F.; Mainegra-Hing, E.; Thomson, R.M.; Vijande, J. url  doi
openurl 
  Title A study of Type B uncertainties associated with the photoelectric effect in low-energy Monte Carlo simulations Type Journal Article
  Year 2021 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 66 Issue 10 Pages 105014 - 14pp  
  Keywords Monte Carlo simulations; brachytherapy; low energy physics; photoelectric effect  
  Abstract Purpose. To estimate Type B uncertainties in absorbed-dose calculations arising from the different implementations in current state-of-the-art Monte Carlo (MC) codes of low-energy photon cross-sections (<200 keV). Methods. MC simulations are carried out using three codes widely used in the low-energy domain: PENELOPE-2018, EGSnrc, and MCNP. Three dosimetry-relevant quantities are considered: mass energy-absorption coefficients for water, air, graphite, and their respective ratios; absorbed dose; and photon-fluence spectra. The absorbed dose and the photon-fluence spectra are scored in a spherical water phantom of 15 cm radius. Benchmark simulations using similar cross-sections have been performed. The differences observed between these quantities when different cross-sections are considered are taken to be a good estimator for the corresponding Type B uncertainties. Results. A conservative Type B uncertainty for the absorbed dose (k = 2) of 1.2%-1.7% (<50 keV), 0.6%-1.2% (50-100 keV), and 0.3% (100-200 keV) is estimated. The photon-fluence spectrum does not present clinically relevant differences that merit considering additional Type B uncertainties except for energies below 25 keV, where a Type B uncertainty of 0.5% is obtained. Below 30 keV, mass energy-absorption coefficients show Type B uncertainties (k = 2) of about 1.5% (water and air), and 2% (graphite), diminishing in all materials for larger energies and reaching values about 1% (40-50 keV) and 0.5% (50-75 keV). With respect to their ratios, the only significant Type B uncertainties are observed in the case of the water-to-graphite ratio for energies below 30 keV, being about 0.7% (k = 2). Conclusions. In contrast with the intermediate (about 500 keV) or high (about 1 MeV) energy domains, Type B uncertainties due to the different cross-sections implementation cannot be considered subdominant with respect to Type A uncertainties or even to other sources of Type B uncertainties (tally volume averaging, manufacturing tolerances, etc). Therefore, the values reported here should be accommodated within the uncertainty budget in low-energy photon dosimetry studies.  
  Address [Valdes-Cortez, Christian; Ballester, Facundo; Vijande, Javier] Univ Valencia UV, Dept Fis Atom Mol & Nucl, Burjassot, Spain, Email: javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000655291500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (up) 4847  
Permanent link to this record
 

 
Author Gao, F.; Papavassiliou, J.; Pawlowski, J.M. url  doi
openurl 
  Title Fully coupled functional equations for the quark sector of QCD Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue 9 Pages 094013 - 25pp  
  Keywords  
  Abstract We present a comprehensive study of the quark sector of 2 + 1 flavor QCD, based on a self-consistent treatment of the coupled system of Schwinger-Dyson equations for the quark propagator and the full quark-gluon vertex in the one-loop dressed approximation. The individual form factors of the quark-gluon vertex are expressed in a special tensor basis obtained from a set of gauge-invariant operators. The sole external ingredient used as input to our equations is the Landau gauge gluon propagator with 2 + 1 dynamical quark flavors, obtained from studies with Schwinger-Dyson equations, the functional renormalization group approach, and large volume lattice simulations. The appropriate renormalization procedure required in order to self-consistently accommodate external inputs stemming from other functional approaches or the lattice is discussed in detail, and the value of the gauge coupling is accurately determined at two vastly separated renormalization group scales. Our analysis establishes a clear hierarchy among the vertex form factors. We identify only three dominant ones, in agreement with previous results. The components of the quark propagator obtained from our approach are in excellent agreement with the results from Schwinger-Dyson equations, the functional renormalization group, and lattice QCD simulation, a simple benchmark observable being the chiral condensate in the chiral limit, which is computed as (245 MeV)(3). The present approach has a wide range of applications, including the self-consistent computation of bound-state properties and finite temperature and density physics, which are briefly discussed.  
  Address [Gao, Fei; Pawlowski, Jan M.] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000655868700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (up) 4848  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Search for CP violation in D-(s)(+) -> h(+) pi(0) and decays D-(s)(+) -> h(+) eta decays Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 019 - 25pp  
  Keywords Charm physics; CP violation; Hadron-Hadron scattering (experiments)  
  Abstract Searches for CP violation in the two-body decays D-(s)(+) -> h(+)pi(0) and D-(s)(+) -> h(+)eta (where h(+) denotes a pi(+) or K+ meson) are performed using pp collision data collected by the LHCb experiment corresponding to either 9 fb(-1) or 6 fb(-1) of integrated luminosity. The pi(0) and eta mesons are reconstructed using the e(+) e(-)gamma final state, which can proceed as three-body decays pi(0) -> e(+) e(-) gamma and eta -> e(+) e(-)gamma, or via the two-body decays pi(0) -> gamma gamma and eta -> gamma gamma followed by a photon conversion. The measurements are made relative to the control modes D-(s)(+) K(S)(0)h(+) to cancel the production and detection asymmetries. The CP asymmetries are measured to be A(CP)(D+ -> pi(+)pi(0)) = (-1.3 +/- 0.9 +/- 0.6)%, A(CP)(D+ -> K+pi(0)) = (- 3.2 +/- 4.7 +/- 2.1)%, A(CP)(D+ -> pi(+)eta) = (-0.2 +/- 0.8 +/- 0.4)%, A(CP)(D+ -> K+eta) = (-6 +/- 10 +/- 4 )%, A(CP)(D-s(+) -> K+pi(0)) = (-0.8 +/- 3.9 +/- 1.2)%, A(CP)(D-s(+) -> pi(+)eta) = ( 0.8 +/- 0.7 +/- 0.5)%, A(CP)(D-s(+) -> K+eta) = ( 0.9 +/- 3.7 +/- 1.1)%, where the first uncertainties are statistical and the second systematic. These results are consistent with no CP violation and mostly constitute the most precise measurements of A(CP) in these decay modes to date.  
  Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: tom.hadavizadeh@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000658752200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (up) 4849  
Permanent link to this record
 

 
Author Calatayud-Jordan, J.; Candela-Juan, C.; Palma, J.D.; Pujades-Claumarchirant, M.C.; Soriano, A.; Gracia-Ochoa, M.; Vilar-Palop, J.; Vijande, J. doi  openurl
  Title Influence of the simultaneous calibration of multiple ring dosimeters on the individual absorbed dose Type Journal Article
  Year 2021 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume 41 Issue 2 Pages 384-397  
  Keywords ring dosimeters; personal dosimetry; calibration; Monte Carlo; ISO 4037  
  Abstract Ring dosimeters for personal dosimetry are calibrated in accredited laboratories following ISO 4037-3 guidelines. The simultaneous irradiation of multiple dosimeters would save time, but has to be carefully studied, since the scattering conditions could change and influence the absorbed dose in nearby dosimeters. Monte Carlo simulations using PENELOPE-2014 were performed to explore the need to increase the uncertainty of H-p (0.07) in the simultaneous irradiation of three and five DXT-RAD 707H-2 (Thermo Scientific) ring dosimeters with beam qualities: N-30, N-80 and N-300. Results show that the absorbed dose in each dosimeter is compatible with each of the others and with the reference simulation (a single dosimeter), with a coverage probability of 95% (k = 2). Comparison with experimental data yielded consistent results with the same coverage probability. Therefore, five ring dosimeters can be simultaneously irradiated with beam qualities ranging, at least, between N-30 and N-300 with a negligible impact on the uncertainty of H-p (0.07).  
  Address [Calatayud-Jordan, J.] Hosp Univ Politecn La Fe, Valencia, Spain, Email: calatayud_josjor@gva.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000657114600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial (up) 4850  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva