toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gosta G. et al.; Gadea, A. doi  openurl
  Title Probing isospin mixing with the giant dipole resonance in the Zn-60 compound nucleus Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 103 Issue 4 Pages L041302 - 6pp  
  Keywords  
  Abstract An experimental study of the isospin mixing in the mass region A = 60 was made by measuring the gamma decay from the giant dipole resonance in the compound nuclei Zn-60 and Zn-62. These compound nuclei were populated at two different excitation energies, E* = 47 MeV and E* = 58 MeV using the fusion evaporation reactions S-32 + Si-28 at the bombarding energy of 86 and 110 MeV and S-32 + Si-30 at 75 and 98 MeV. In the experiment, performed at the Laboratori Nazionali di Legnaro of the Istituto Nazionale di Fisica Nucleare (INFN), the gamma rays were measured with the GALILEO detection system in which large-volume LaBr3(Ce) detectors were added to the HPGe detectors. The Coulomb spreading width was obtained from the comparison of the two reactions and then the isospin mixing parameter at zero temperature and the isospin-symmetry-breaking correction for beta decay were deduced. The present results were compared with data of the same type in other mass regions and with data from mass and beta-decay measurements and with theory. The present data allow us to deduce for the first time a consistent picture for mass dependence of isospin mixing and for the corresponding correction for the beta decay, supporting a reliable extension to the very interesting region of Sn-100.  
  Address [Gosta, G.; Mentana, A.; Camera, F.; Bracco, A.; Capra, S.; Crespi, F. C. L.; Leoni, S.; Riboldi, S.; Porzio, C.; Ziliani, S.] Univ Milan, Dipartimento Fis, Milan, Italy, Email: Franco.Camera@mi.infn.it;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000647600600009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (up) 4826  
Permanent link to this record
 

 
Author Bennett, J.J.; Buldgen, G.; de Salas, P.F.; Drewes, M.; Gariazzo, S.; Pastor, S.; Wong, Y.Y.Y. url  doi
openurl 
  Title Towards a precision calculation of the effective number of neutrinos N-eff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 073 - 33pp  
  Keywords cosmological neutrinos; neutrino properties; particle physics – cosmology connection; physics of the early universe  
  Abstract We present in this work a new calculation of the standard-model benchmark value for the effective number of neutrinos, N-eff(SM), that quantifies the cosmological neutrinoto-photon energy densities. The calculation takes into account neutrino flavour oscillations, finite-temperature effects in the quantum electrodynamics plasma to O(e(3)), where e is the elementary electric charge, and a full evaluation of the neutrino-neutrino collision integral. We provide furthermore a detailed assessment of the uncertainties in the benchmark N(eff)(SM )value, through testing the value's dependence on (i) optional approximate modelling of the weak collision integrals, (ii) measurement errors in the physical parameters of the weak sector, and (iii) numerical convergence, particularly in relation to momentum discretisation. Our new, recommended standard-model benchmark is N-eff(SM) 3.0440 +/- 0.0002, where the nominal uncertainty is attributed predominantly to errors incurred in the numerical solution procedure (vertical bar delta N-eff vertical bar similar to 10(-4)), augmented by measurement errors in the solar mixing angle sin(2) theta(12) (vertical bar delta N-eff vertical bar similar to 10(-4)).  
  Address [Bennett, Jack J.; Wong, Yvonne Y. Y.] Univ New South Wales, Sch Phys, Sydney Consortium Particle Phys & Cosmol, Sydney, NSW 2052, Australia, Email: j.j.bennett@unsw.edu.au;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000647827600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (up) 4827  
Permanent link to this record
 

 
Author Dimitriou, P. et al; Tain, J.L.; Algora, A. url  doi
openurl 
  Title Development of a Reference Database for Beta-Delayed Neutron Emission Type Journal Article
  Year 2021 Publication Nuclear Data Sheets Abbreviated Journal Nucl. Data Sheets  
  Volume 173 Issue Pages 144-238  
  Keywords  
  Abstract Beta-delayed neutron emission is important for nuclear structure and astrophysics as well as for reactor applications. Significant advances in nuclear experimental techniques in the past two decades have led to a wealth of new measurements that remain to be incorporated in the databases. We report on a coordinated effort to compile and evaluate all the available beta-delayed neutron emission data. The different measurement techniques have been assessed and the data have been compared with semi-microscopic and microscopic-macroscopic models. The new microscopic database has been tested against aggregate total delayed neutron yields, time-dependent group parameters in 6-and 8-group re-presentation, and aggregate delayed neutron spectra. New recommendations of macroscopic delayed-neutron data for fissile materials of interest to applications are also presented.  
  Address [Dimitriou, P.; Verpelli, M.] IAEA, NAPC Nucl Data Sect, A-1400 Vienna, Austria, Email: p.dimitriou@iaea.org  
  Corporate Author Thesis  
  Publisher Academic Press Inc Elsevier Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0090-3752 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000647012500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (up) 4828  
Permanent link to this record
 

 
Author Das, A.; Mandal, S. url  doi
openurl 
  Title Bounds on the triplet fermions in type-III seesaw and implications for collider searches Type Journal Article
  Year 2021 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 966 Issue Pages 115374 - 33pp  
  Keywords  
  Abstract Type-III seesaw is a simple extension of the Standard Model (SM) with the SU(2)(L) triplet fermion with zero hypercharge. It can explain the origin of the tiny neutrino mass and flavor mixing. After the electroweak symmetry breaking the light neutrino mass is generated by the seesaw mechanism which further ensures the mixings between the light neutrino and heavy neutral lepton mass eigenstates. If the triplet fermions are around the electroweak scale having sizable mixings with the SM sector allowed by the correct gauge symmetry, they can be produced at the high energy colliders leaving a variety of characteristic signatures. Based on a simple and concrete realizations of the model we employ a general parametrization for the neutrino Dirac mass matrix and perform a parameter scan to identify the allowed regions satisfying the experimental constraints from the neutrino oscillation data, the electroweak precision measurements and the lepton-flavor violating processes, respectively considering the normal and inverted neutrino mass hierarchies. These parameter regions can be probed at the different collider experiments.  
  Address [Das, Arindam] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan, Email: arindam.das@het.phys.sci.osaka-u.ac.jp;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000646135900011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (up) 4829  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Measurement of the CP-violating phase phi(s) in B-s(0) -> J/psi phi decays in ATLAS at 13 TeV Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 4 Pages 342 - 36pp  
  Keywords  
  Abstract A measurement of the B-0(s) -> J/psi phi decay parameters using 80.5 fb(-1) of integrated luminosity collected with the ATLAS detector from 13 TeV proton-proton collisions at the LHC is presented. The measured parameters include the CP-violating phase phi(s), the width difference Delta Gamma(s) between the B-s(0) meson mass eigenstates and the average decay width Gamma(s). The values measured for the physical parameters are combined with those from 19.2 fb(-1) of 7 and 8 TeV data, leading to the following: phi(s) = -0.087 +/- 0.036 (stat.) +/- 0.021 (syst.) rad Delta Gamma(s) = 0.0657 +/- 0.0043 (stat.) +/- 0.0037 (syst.) ps(-1) Gamma(s) = 0.6703 +/- 0.0014 (stat.) +/- 0.0018 (syst.) ps(-1) Results for phi(s) and Delta Gamma(s) are also presented as 68% confidence level contours in the phi(s)-Delta Gamma(s) plane. Furthermore the transversity amplitudes and corresponding strong phases are measured. phi(s) and Delta Gamma(s) measurements are in agreement with the Standard Model predictions.  
  Address [Duvnjak, D.; Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Ruggeri, T. A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000643913400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (up) 4830  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva