toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Maso-Ferrando, A.; Sanchis-Gual, N.; Font, J.A.; Olmo, G.J. url  doi
openurl 
  Title Boson stars in Palatini f(R) gravity Type Journal Article
  Year 2021 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 38 Issue 19 Pages 194003 - 25pp  
  Keywords boson stars; Palatini formalism; modified gravity  
  Abstract We explore equilibrium solutions of spherically symmetric boson stars in the Palatini formulation of f (R) gravity. We account for the modifications introduced in the gravitational sector by using a recently established correspondence between modified gravity with scalar matter and general relativity with modified scalar matter. We focus on the quadratic theory f (R) = R + xi R-2 and compare its solutions with those found in general relativity, exploring both positive and negative values of the coupling parameter xi. As matter source, a complex, massive scalar field with and without self-interaction terms is considered. Our results show that the existence curves of boson stars in Palatini f (R) gravity are fairly similar to those found in general relativity. Major differences are observed for negative values of the coupling parameter which results in a repulsive gravitational component for high enough scalar field density distributions. Adding self-interactions makes the degeneracy between f (R) and general relativity even more pronounced, leaving very little room for observational discrimination between the two theories.  
  Address [Maso-Ferrando, Andreu; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto Univ Valencia CSIC, Valencia 46100, Spain, Email: andreu.maso@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000695280300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 4964  
Permanent link to this record
 

 
Author Esposito, R. et al; Domingo-Pardo, C. url  doi
openurl 
  Title Design of the third-generation lead-based neutron spallation target for the neutron time-of-flight facility at CERN Type Journal Article
  Year 2021 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 24 Issue 9 Pages 093001 - 17pp  
  Keywords  
  Abstract The neutron time-of-flight (n_TOF) facility at the European Laboratory for Particle Physics (CERN) is a pulsed white-spectrum neutron spallation source producing neutrons for two experimental areas: the Experimental Area 1 (EAR1), located 185 m horizontally from the target, and the Experimental Area 2 (EAR2), located 20 m above the target. The target, based on pure lead, is impacted by a high-intensity 20-GeV/c pulsed proton beam. The facility was conceived to study neutron-nucleus interactions for neutron kinetic energies between a few meV to several GeV, with applications of interest for nuclear astrophysics, nuclear technology, and medical research. After the second-generation target reached the end of its lifetime, the facility underwent a major upgrade during CERN's Long Shutdown 2 (LS2, 2019-2021), which included the installation of the new third-generation neutron target. The first- and second-generation targets were based on water-cooled massive lead blocks and were designed focusing on EAR1, since EAR2 was built later. The new target is cooled by nitrogen gas to avoid erosion-corrosion and contamination of cooling water with radioactive lead spallation products. Moreover, the new design is optimized also for the vertical flight path and EAR2. This paper presents an overview of the target design focused on both physics and thermomechanical performance, and includes a description of the nitrogen cooling circuit and radiation protection studies.  
  Address [Esposito, R.; Calviani, M.; Aberle, O.; Barbagallo, M.; Coiffet, T.; Dragoni, F.; Ximenes, R. Franqueira; Giordanino, L.; Grenier, D.; Kershaw, K.; Maire, V.; Moyret, P.; Fontenla, A. Perez; Perillo-Marcone, A.; Pozzi, F.; Sgobba, S.; Timmins, M.; Vlachoudis, V.] European Lab Particle Phys CERN, CH-1211 Geneva 23, Switzerland, Email: raffaele.esposito@cern.ch;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000696029700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 4963  
Permanent link to this record
 

 
Author Cosme, C.; Dutra, M.; Godfrey, S.; Gray, T. url  doi
openurl 
  Title Testing freeze-in with axial and vector Z ' bosons Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 056 - 27pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM  
  Abstract The freeze-in production of Feebly Interacting Massive Particle (FIMP) dark matter in the early universe is an appealing alternative to the well-known – and constrained – Weakly Interacting Massive Particle (WIMP) paradigm. Although challenging, the phenomenology of FIMP dark matter has been receiving growing attention and is possible in a few scenarios. In this work, we contribute to this endeavor by considering a Z ' portal to fermionic dark matter, with the Z ' having both vector and axial couplings and a mass ranging from MeV up to PeV. We evaluate the bounds on both freeze-in and freeze-out from direct detection, atomic parity violation, leptonic anomalous magnetic moments, neutrino-electron scattering, collider, and beam dump experiments. We show that FIMPs can already be tested by most of these experiments in a complementary way, whereas WIMPs are especially viable in the Z ' low mass regime, in addition to the Z ' resonance region. We also discuss the role of the axial couplings of Z ' in our results. We therefore hope to motivate specific realizations of this model in the context of FIMPs, as well as searches for these elusive dark matter candidates.  
  Address [Cosme, Catarina; Dutra, Maira; Godfrey, Stephen; Gray, Taylor] Carleton Univ, Ottawa Carleton Inst Phys, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada, Email: catarina.cosme@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000695081900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 4962  
Permanent link to this record
 

 
Author Molina, R.; Doring, M.; Liang, W.H.; Oset, E. url  doi
openurl 
  Title The pi f(0)(500) decay of the a(1)(1260) Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 9 Pages 782 - 9pp  
  Keywords  
  Abstract We evaluate the a(1)(1260) -> pi sigma(f(0)(500)) decay width from the perspective that the a(1)(1260) resonance is dynamically generated from the pseudoscalar-vector interaction and the sigma arises from the pseudoscalar-pseudoscalar interaction. A triangle mechanism with a(1)(1260) -> p pi followed by rho -> pi pi and a fusion of two pions within the loop to produce the sigma provides the mechanism for this decay under these assumptions for the nature of the two resonances. We obtain widths of the order of 13-22 MeV. Present experimental results differ substantially from each other, suggesting that extra efforts should be devoted to the precise extraction of this important partial decay width, which should provide valuable information on the nature of the axial vector and scalar meson resonances and help clarify the role of the ps channel in recent lattice QCD calculations of the a(1).  
  Address [Molina, R.; Oset, E.] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC,Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: Raquel.Molina@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000694246400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 4961  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Poveda, J.; Prades Ibañez, A.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Santra, A.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Search for bottom-squark pair production in pp collision events at root s=13 TeV with hadronically decaying tau-leptons, b-jets, and missing transverse momentum using the ATLAS detector Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue 3 Pages 032014 - 31pp  
  Keywords  
  Abstract A search for pair production of bottom squarks in events with hadronically decaying t-leptons, b-tagged jets, and large missing transverse momentum is presented. The analyzed dataset is based on proton-proton collisions at root s = 13 TeV delivered by the Large Hadron Collider and recorded by the ATLAS detector from 2015 to 2018, and corresponds to an integrated luminosity of 139 fb(-1). The observed data are compatible with the expected Standard Model background. Results are interpreted in a simplified model where each bottom squark is assumed to decay into the second-lightest neutralino (chi) over tilde (0)(2) and a bottom quark, with (chi) over tilde (0)(2) decaying into a Higgs boson and the lightest neutralino (chi) over tilde1(0). The search focuses on final states where at least one Higgs boson decays into a pair of hadronically decaying t-leptons. This allows the acceptance and thus the sensitivity to be significantly improved relative to the previous results at low masses of the (chi) over tilde (0)(2), where bottom-squark masses up to 850 GeV are excluded at the 95% confidence level, assuming a mass difference of 130 GeV between (chi) over tilde (0)(2) and (chi) over tilde (0)(1). Model-independent upper limits are also set on the cross section of processes beyond the Standard Model.  
  Address [Duvnjak, D.; Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Ruggeri, T. A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000692081200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 4960  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva