|   | 
Details
   web
Records
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title HAWC J2227+610 and Its Association with G106.3+2.7, a New Potential Galactic PeVatron Type Journal Article
Year 2020 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 896 Issue 2 Pages L29 - 9pp
Keywords Gamma-ray astronomy; Gamma-ray sources; Gamma-rays; Cosmic ray sources; Supernova remnants; Gamma-ray observatories
Abstract We present the detection of very-high-energy gamma-ray emission above 100 TeV from HAWC J2227+610 with the High-Altitude Water Cherenov Gamma-Ray Observatory (HAWC) observatory. Combining our observations with previously published results by the Very Energetic Radiation Imaging Telescope Array System (VERTIAS), we interpret the gamma-ray emission from HAWC J2227+610 as emission from protons with a lower limit in their cutoff energy of 800 TeV. The most likely source of the protons is the associated supernova remnant G106.3+2.7, making it a good candidate for a Galactic PeVatron. However, a purely leptonic origin of the observed emission cannot be excluded at this time.
Address [Albert, A.; Dingus, B. L.; Harding, J. P.; Malone, K.; Sinnis, G.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: hfleisch@mtu.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000542724600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 4445
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title Measurement of CP observables in B+/- -> DK+/- and B+/- -> D pi+/- with D -> KS0 K+/- pi-/+ decays Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 058 - 25pp
Keywords B physics; CKM angle gamma; CP violation; Flavor physics; Hadron-Hadron scattering (experiments)
Abstract Measurements of CP observables in B-+/- -> DK +/- and B-+/- -> D pi (+/-) decays are presented, where D represents a superposition of D-0 and D<overbar>0 states. The D meson is reconstructed in the three-body final states KS0K +/- pi -/+ and KS0K -/+ pi +/-. The analysis uses samples of B mesons produced in proton-proton collisions, corresponding to an integrated luminosity of 1.0, 2.0, and 6.0 fb(-1) collected with the LHCb detector at centre-of-mass energies of <mml:msqrt>s</mml:msqrt> = 7, 8, and 13 TeV, respectively. These measurements are the most precise to date, and provide important input for the determination of the CKM angle gamma.
Address [Bediaga, I; Cruz Torres, M.; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Torres Machado, D.] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: donal.hill@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000541066400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 4444
Permanent link to this record
 

 
Author Calibbi, L.; Lopez-Ibañez, M.L.; Melis, A.; Vives, O.
Title Muon and electron g – 2 and lepton masses in flavor models Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 087 - 23pp
Keywords Precision QED; Beyond Standard Model; Effective Field Theories; Quark Masses and SM Parameters
Abstract The stringent experimental bound on μ-> e gamma is compatible with a simultaneous and sizable new physics contribution to the electron and muon anomalous magnetic moments (g – 2)(l) (l = e, mu), only if we assume a non-trivial flavor structure of the dipole operator coefficients. We propose a mechanism in which the realization of the (g – 2)(l) correction is manifestly related to the mass generation through a flavor symmetry. A radiative flavon correction to the fermion mass gives a contribution to the anomalous magnetic moment. In this framework, we introduce a chiral enhancement from a non-trivial O(1) quartic coupling of the scalar potential. We show that the muon and electron anomalies can be simultaneously explained in a vast region of the parameter space with predicted vector-like mediators of masses as large as M chi is an element of [0.6, 2.5] TeV.
Address [Calibbi, Lorenzo] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China, Email: calibbi@nankai.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000542705000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 4443
Permanent link to this record
 

 
Author Arbelaez, C.; Carcamo Hernandez, A.E.; Cepedello, R.; Kovalenko, S.; Schmidt, I.
Title Sequentially loop suppressed fermion masses from a single discrete symmetry Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 043 - 24pp
Keywords Beyond Standard Model; Neutrino Physics; Quark Masses and SM Parameters
Abstract We propose a systematic and renormalizable sequential loop suppression mechanism to generate the hierarchy of the Standard Model fermion masses from one discrete symmetry. The discrete symmetry is sequentially softly broken in order to generate one-loop level masses for the bottom, charm, tau and muon leptons and two-loop level masses for the lightest Standard Model charged fermions. The tiny masses for the light active neutrinos are produced from radiative type-I seesaw mechanism, where the Dirac mass terms are effectively generated at two-loop level.
Address [Arbelaez, Carolina; Carcamo Hernandez, A. E.; Schmidt, Ivan] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000540500300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 4430
Permanent link to this record
 

 
Author Stadler, J.; Boehm, C.; Mena, O.
Title Is it mixed dark matter or neutrino masses? Type Journal Article
Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 039 - 18pp
Keywords cluster counts; cosmological parameters from CMBR; cosmological parameters from LSS; neutrino masses from cosmology
Abstract In this paper, we explore a scenario where the dark matter is a mixture of interacting and non interacting species. Assuming dark matter-photon interactions for the interacting species, we find that the suppression of the matter power spectrum in this scenario can mimic that expected in the case of massive neutrinos. Our numerical studies include present limits from Planck Cosmic Microwave Background data, which render the strength of the dark matter photon interaction unconstrained when the fraction of interacting dark matter is small. Despite the large entangling between mixed dark matter and neutrino masses, we show that future measurements from the Dark Energy Instrument (DESI) could help in establishing the dark matter and the neutrino properties simultaneously, provided that the interaction rate is very close to its current limits and the fraction of interacting dark matter is at least of O (10%). However, for that region of parameter space where a small fraction of interacting DM coincides with a comparatively large interaction rate, our analysis highlights a considerable degeneracy between the mixed dark matter parameters and the neutrino mass scale.
Address [Stadler, Julia; Boehm, Celine] Univ Durham, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England, Email: jstadler@mpe.mpg.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000528025800040 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 4383
Permanent link to this record