toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Gouvea, A.; Herrero-Garcia, J.; Kobach, A. url  doi
openurl 
  Title Neutrino masses, grand unification, and baryon number violation Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 1 Pages 016011 - 11pp  
  Keywords  
  Abstract If grand unification is real, searches for baryon-number violation should be included on the list of observables that may reveal information regarding the origin of neutrino masses. Making use of an effective-operator approach and assuming that nature is SU(5) invariant at very short distances, we estimate the consequences of different scenarios that lead to light Majorana neutrinos for low-energy phenomena that violate baryon number minus lepton number (B – L) by two (or more) units, including neutron-antineutron oscillations and B – L violating nucleon decays. We find that, among all possible effective theories of lepton-number violation that lead to nonzero neutrino masses, only a subset is, broadly speaking, consistent with grand unification.  
  Address [de Gouvea, Andre; Herrero-Garcia, Juan; Kobach, Andrew] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339482900016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 1860  
Permanent link to this record
 

 
Author Herrero-Garcia, J.; Nebot, M.; Rius, N.; Santamaria, A. url  doi
openurl 
  Title The Zee-Babu model revisited in the light of new data Type Journal Article
  Year 2014 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 885 Issue Pages 542-570  
  Keywords  
  Abstract We update previous analyses of the Zee-Babu model in the light of new data, e.g., the mixing angle On, the rare decay μ-> e gamma and the LHC results. We also analyze the possibility of accommodating the deviations in Gamma (H -> gamma gamma) hinted by the LHC experiments, and the stability of the scalar potential. We find that neutrino oscillation data and low energy constraints are still compatible with masses of the extra charged scalars accessible to LHC. Moreover, if any of them is discovered, the model can be falsified by combining the information on the singly and doubly charged scalar decay modes with neutrino data. Conversely, if the neutrino spectrum is found to be inverted and the CP phase delta is quite different from pi, the masses of the charged scalars will be well outside the LHC reach.  
  Address [Herrero-Garcia, Juan; Rius, Nuria; Santamaria, Arcadi] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339598300025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 1858  
Permanent link to this record
 

 
Author Bozorgnia, N.; Herrero-Garcia, J.; Schwetz, T.; Zupan, J. url  doi
openurl 
  Title Halo-independent methods for inelastic dark matter scattering Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 049 - 15pp  
  Keywords dark matter theory; dark matter experiments  
  Abstract We present halo-independent methods to analyze the results of dark matter direct detection experiments assuming inelastic scattering. We focus on the annual modulation signal reported by DAMA/LIBRA and present three different halo-independent tests. First, we compare it to the upper limit on the unmodulated rate from XENON100 using (a) the trivial requirement that the amplitude of the annual modulation has to be smaller than the bound on the unmodulated rate, and (b) a bound on the annual modulation amplitude based on an expansion in the Earth's velocity. The third test uses the special predictions of the signal shape for inelastic scattering and allows for an internal consistency check of the data without referring to any astrophysics. We conclude that a strong conflict between DAMA/LIBRA and XENON100 in the framework of spin-independent inelastic scattering can be established independently of the local properties of the dark matter halo.  
  Address [Bozorgnia, Nassim; Schwetz, Thomas] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany, Email: bozorgnia@mpi-hd.mpg.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000322582000050 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 1530  
Permanent link to this record
 

 
Author Herrero-Garcia, J.; Schwetz, T.; Zupan, J. url  doi
openurl 
  Title Astrophysics independent bounds on the annual modulation of dark matter signals Type Journal Article
  Year 2012 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 109 Issue 14 Pages 141301 - 5pp  
  Keywords  
  Abstract We show how constraints on the time integrated event rate from a given dark matter (DM) direct detection experiment can be used to bound the amplitude of the annual modulation signal in another experiment. The method requires only mild assumptions about the properties of the local DM distribution: that it is temporally stable on the scale of months and spatially homogeneous on the ecliptic. We apply the method to the annual modulation signal in DAMA/LIBRA, which we compare to the bounds derived from XENON10, XENON100, cryogenic DM search, and SIMPLE data. Assuming a DM mass of 10 GeV, we show that under the above assumptions about the DM halo, a DM interpretation of the DAMA/LIBRA signal is excluded for several classes of models: at 6.3 sigma (4.6 sigma) for elastic isospin conserving (violating) spin-independent interactions, and at 4.9 sigma for elastic spin-dependent interactions on protons.  
  Address [Herrero-Garcia, Juan] Univ Valencia, CSIC, Dept Fis Teor, E-46071 Valencia, Spain, Email: juan.a.herrero@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000309455600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 1179  
Permanent link to this record
 

 
Author Aparici, A.; Herrero-Garcia, J.; Rius, N.; Santamaria, A. url  doi
openurl 
  Title On the nature of the fourth generation neutrino and its implications Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 030 - 31pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We consider the neutrino sector of a Standard Model with four generations. While the three light neutrinos can obtain their masses from a variety of mechanisms with or without new neutral fermions, fourth-generation neutrinos need at least one new relatively light right-handed neutrino. If lepton number is not conserved this neutrino must have a Majorana mass term whose size depends on the underlying mechanism for lepton number violation. Majorana masses for the fourth-generation neutrinos induce relative large two-loop contributions to the light neutrino masses which could be even larger than the cosmological bounds. This sets strong limits on the mass parameters and mixings of the fourth-generation neutrinos.  
  Address [Aparici, Alberto] Univ Valencia, CSIC, Dept Fis Teor, Valencia 46071, Spain, Email: alberto.aparici@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307298400030 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial (down) 1157  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva