|   | 
Details
   web
Records
Author Gomez-Cadenas, J.J.; Benlloch-Rodriguez, J.M.; Ferrario, P.; Monrabal, F.; Rodriguez, J.; Toledo, J.F.
Title Investigation of the coincidence resolving time performance of a PET scanner based on liquid xenon: a Monte Carlo study Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 11 Issue Pages P09011 - 18pp
Keywords Gamma camera; SPECT; PET PET/CT; coronary CT angiography (CTA); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Noble liquid detectors (scintillation ionization, double-phase); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators)
Abstract The measurement of the time of flight of the two 511 keV gammas recorded in coincidence in a PET scanner provides an effective way of reducing the random background and therefore increases the scanner sensitivity, provided that the coincidence resolving time (CRT) of the gammas is sufficiently good. The best commercial PET-TOF system today (based in LYSO crystals and digital SiPMs), is the VEREOS of Philips, boasting a CRT of 316 ps (FWHM). In this paper we present a Monte Carlo investigation of the CRT performance of a PET scanner exploiting the scintillating properties of liquid xenon. We find that an excellent CRT of 70 ps (depending on the PDE of the sensor) can be obtained if the scanner is instrumented with silicon photomultipliers (SiPMs) sensitive to the ultraviolet light emitted by xenon. Alternatively, a CRT of 160 ps can be obtained instrumenting the scanner with (much cheaper) blue-sensitive SiPMs coated with a suitable wavelength shifter. These results show the excellent time of flight capabilities of a PET device based in liquid xenon.
Address [Gomez-Cadenas, J. J.; Benlloch-Rodriguez, J. M.; Ferrario, P.; Rodriguez, J.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: paola.ferrario@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000387862300011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 2866
Permanent link to this record
 

 
Author Modamio, V.; Valiente-Dobon, J.J.; Jaworski, G.; Huyuk, T.; Triossi, A.; Egea, J.; Di Nitto, A.; Soderstrom, P.A.; Ros, J.A.; de Angelis, G.; de France, G.; Erduran, M.N.; Erturk, S.; Gadea, A.; Gonzalez, V.; Kownacki, J.; Moszynski, M.; Nyberg, J.; Palacz, M.; Sanchis, E.; Wadsworthm, R.
Title Digital pulse-timing technique for the neutron detector array NEDA Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 775 Issue Pages 71-76
Keywords Digital timing; Constant fraction discriminator; Liquid scintillator; BC501A; Neutron detector; NEDA
Abstract A new digital pulse-timing algorithm, to be used with the future neutron detector array NEDA, has been developed and tested. The time resolution of four 5 in diameter photomultiplier tubes (XP4512, R4144, R11833-100, and ET9390-kb), coupled to a cylindrical 5 in by 5 in BC501A liquict scintillator detector was measured by employing digital sampling electronics and a constant fraction discriminator (CFD) algorithm. The zero crossing of the CM algorithm was obtained with a cubic spline interpolation, which was continuous up to the second derivative. The performance of the algorithm was studied at sampling rates of 500 MS/s and 200 MS/s. The time resolution obtained with the digital electronics was compared to the values acquired with a standard analog CFD. The result of this comparison shows that the time resolution from the analog and the digital measurements at 500 MS/s and at 200 MS/s are within 15% for all the tested photomultiplier tubes.
Address [Modamio, V.; Valiente-Dobon, J. J.; Triossi, A.; de Angelis, G.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy, Email: victor.modamio@lnl.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000348040900011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 2093
Permanent link to this record
 

 
Author Luo, X.L. et al; Agramunt, J.; Egea, F.J.; Gadea, A.; Huyuk, T.
Title Test of digital neutron-gamma discrimination with four different photomultiplier tubes for the NEutron Detector Array (NEDA) Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 767 Issue Pages 83-91
Keywords Digital neutron-gamma discrimination; Liquid scintillator; Photomultiplier tube; Charge Comparison; Integrated rise-time; Time-of-flight; NEDA
Abstract A comparative study of the neutron-gamma discrimination performance of a liquid scintillator detector BC501A coupled to four different 5 in photomultiplier tubes (ET9390kb, R11833-100, XP4512 and R4144) was carried out Both the Charge Comparison method and the Integrated Rise-Time method were implemented digitally to discriminate between neutrons and gamma rays emitted by a Cf-252 source. In both methods, the neutron-gamma discrimination capabilities of the four photomultiplier tubes were quantitatively compared by evaluating their figure-of-merit values at different energy regions between 50 keVee and 1000 keVee. Additionally, the results were further verified qualitatively using time-of-flight to distinguish gamma rays and neutrons. The results consistently show that photomultiplier tubes R11833-100 and ET9390kb generally perform best regarding neutron-gamma discrimination with only slight differences in figure-of-merit values. This superiority can be explained by their relatively higher photoelectron yield, which indicates that a scintillator detector coupled to a photomultiplier tube with higher photoelectron yield tends to result in better neutron-gamma discrimination performance. The results of this work will provide reference for the choice of photomultiplier tubes for future neutron detector arrays like NEDA.
Address [Luo, X. L.] Natl Univ Def Technol, Coll Mechatron & Automat, Dept Instrument Sci & Technol, Changsha, Hunan, Peoples R China, Email: luo.xiaoliang@physics.uu.se
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000344994600012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 2011
Permanent link to this record
 

 
Author ATLAS Tile Calorimeter Community (Abdallah, J. et al); Castillo Gimenez, V.; Costelo, J.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon-Rodriguez, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A.
Title The optical instrumentation of the ATLAS Tile Calorimeter Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P01005 - 21pp
Keywords Calorimeters; Calorimeter methods; Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators)
Abstract The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of +/-1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.
Address [Dawson, J.; Drake, G.; Guarino, V.; Hill, N.; LeCompte, T.; Nodulman, L.; Price, E.; Proudfoot, J.; Schlereth, J.; Stanek, R.; Underwood, D.] Argonne Natl Lab, Argonne, IL 60439 USA, Email: Tomas.Davidek@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000320665400062 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 1515
Permanent link to this record
 

 
Author Garcia, A.R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M.C.; Reillo, E.M.; Santos, C.; Tera, F.J.; Villamarin, D.; Nolte, R.; Agramunt, J.; Algora, A.; Tain, J.L.; Banerjee, K.; Bhattacharya, C.; Pentilla, H.; Rinta-Antila, S.; Gorelov, D.
Title MONSTER: a time of flight spectrometer for beta-delayed neutron emission measurements Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages C05012 - 12pp
Keywords Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Neutron detectors (cold, thermal, fast neutrons)
Abstract The knowledge of the beta-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the beta-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (S-beta) function. In addition, beta-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.
Address [Garcia, A. R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M. C.; Reillo, E. M.; Santos, C.; Tera, F. J.; Villamarin, D.] Ctr Invest Energet MedioAmbientales & Tecnol CIEM, E-28040 Madrid, Spain, Email: trino.martinez@ciemat.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000305419700013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 1084
Permanent link to this record