|   | 
Details
   web
Records
Author Andricek, L. et al; Lacasta, C.; Marinas, C.; Vos, M.
Title Intrinsic resolutions of DEPFET detector prototypes measured at beam tests Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 638 Issue 1 Pages 24-32
Keywords Silicon pixel detector; Detector resolution; Spatial resolution; DEPFET; Beam test
Abstract The paper is based on the data of the 2009 DEPFET beam test at CERN SPS. The beam test used beams of pions and electrons with energies between 40 and 120 GeV, and the sensors tested were prototypes with thickness of 450 μm and pixel pitch between 20 and 32 μm. Intrinsic resolutions of the detectors are calculated by disentangling the contributions of measurement errors and multiple scattering in tracking residuals. Properties of the intrinsic resolution estimates and factors that influence them are discussed. For the DEPFET detectors in the beam test, the calculation yields intrinsic resolutions of approximate to 1 μm, with a typical accuracy of 0.1 μm. Bias scan, angle scan, and energy scan are used as example studies to show that the intrinsic resolutions are a useful tool in studies of detector properties. With sufficiently precise telescopes, detailed resolution maps can be constructed and used to study and optimize detector performance.
Address [Dolezal, Z.; Drasal, Z.; Kodys, P.; Kvasnicka, P.; Malina, L.; Scheirich, J.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CR-18000 Prague, Czech Republic, Email: peter.kodys@mff.cuni.cz
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000290082600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 618
Permanent link to this record
 

 
Author AGATA Collaboration (Soderstrom, P.A. et al); Gadea, A.
Title Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 638 Issue 1 Pages 96-109
Keywords gamma-ray tracking; AGATA; Monte Carlo simulations; HPGe detectors; Fusion-evaporation reactions
Abstract The interaction position resolution of the segmented HPGe detectors of an AGATA triple cluster detector has been studied through Monte Carlo simulations and in an in-beam experiment. A new method based on measuring the energy resolution of Doppler-corrected gamma-ray spectra at two different target to detector distances is described. This gives the two-dimensional position resolution in the plane perpendicular to the direction of the emitted gamma-ray. The gamma-ray tracking was used to determine the full energy of the gamma-rays and the first interaction point, which is needed for the Doppler correction. Five different heavy-ion induced fusion-evaporation reactions and a reference reaction were selected for the simulations. The results of the simulations show that the method works very well and gives a systematic deviation of <1 mm in the FVVHM of the interaction position resolution for the gamma-ray energy range from 60 keV to 5 MeV. The method was tested with real data from an in-beam measurement using a (30)5i beam at 64 MeV on a thin C-12 target. Pulse-shape analysis of the digitized detector waveforms and gamma-ray tracking was performed to determine the position of the first interaction point, which was used for the Doppler corrections. Results of the dependency of the interaction position resolution on the gamma-ray energy and on the energy, axial location and type of the first interaction point, are presented. The FVVHM of the interaction position resolution varies roughly linearly as a function of gamma-ray energy from 8.5 mm at 250 key to 4 mm at 1.5 MeV, and has an approximately constant value of about 4 mm in the gamma-ray energy range from 1.5 to 4 MeV.
Address [Soderstrom, P. -A.; Nyberg, J.; Al-Adili, A.; Atac, A.; Veyssiere, C.] Uppsala Univ, Dept Phys & Astron, SE-75121 Uppsala, Sweden, Email: P-A.Soderstrom@physics.uu.se
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000290082600015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 619
Permanent link to this record
 

 
Author Marco-Hernandez, R.
Title Development of a beam test telescope based on the Alibava readout system Type Journal Article
Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 6 Issue Pages C01002 - 7pp
Keywords Particle tracking detectors; Data acquisition circuits; Front-end electronics for detector readout; Digital electronic circuits
Abstract A telescope for a beam test have been developed as a result of a collaboration among the University of Liverpool, Centro Nacional de Microelectronica (CNM) of Barcelona and Instituto de Fisica Corpuscular (IFIC) of Valencia. This system is intended to carry out both analogue charge collection and spatial resolution measurements with different types of microstrip or pixel silicon detectors in a beam test environment. The telescope has four XY measurement as well as trigger planes (XYT board) and it can accommodate up to twelve devices under test (DUT board). The DUT board uses two Beetle ASICs for the readout of chilled silicon detectors. The board could operate in a self-triggering mode. The board features a temperature sensor and it can be mounted on a rotary stage. A peltier element is used for cooling the DUT. Each XYT board measures the track space points using two silicon strip detectors connected to two Beetle ASICs. It can also trigger on the particle tracks in the beam test. The board includes a CPLD which allows for the synchronization of the trigger signal to a common clock frequency, delaying and implementing coincidence with other XYT boards. An Alibava mother board is used to read out and to control each XYT/DUT board from a common trigger signal and a common clock signal. The Alibava board has a TDC on board to have a time stamp of each trigger. The data collected by each Alibava board is sent to a master card by means of a local data/address bus following a custom digital protocol. The master board distributes the trigger, clock and reset signals. It also merges the data streams from up to sixteen Alibava boards. The board has also a test channel for testing in a standard mode a XYT or DUT board. This board is implemented with a Xilinx development board and a custom patch board. The master board is connected with the DAQ software via 100M Ethernet. Track based alignment software has also been developed for the data obtained with the DAQ software.
Address [Marco-Hernandez, R.; Alibava Collaboration] CSIC UV, Inst Fis Corpuscular, E-46980 Paterna, Valencia, Spain, Email: rmarco@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes ISI:000291345600007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial (up) 644
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays Type Journal Article
Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 6 Issue Pages P01003 - 16pp
Keywords Cherenkov detectors; Large detector systems for particle and astroparticle physics; Particle detectors
Abstract Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.
Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] LIP, P-1000 Lisbon, Portugal
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes ISI:000291345600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (up) 646
Permanent link to this record
 

 
Author Miñano, M.
Title Radiation Hard Silicon Strips Detectors for the SLHC Type Journal Article
Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 58 Issue 3 Pages 1135-1140
Keywords High energy physics; microstrip; radiation detectors; silicon; SLHC
Abstract While the Large Hadron Collider (LHC) began taking data in 2009, scenarios for a machine upgrade to achieve a much higher luminosity are being developed. In the current planning, it is foreseen to increase the luminosity of the LHC at CERN around 2018. As radiation damage scales with integrated luminosity, the particle physics experiments will need to be equipped with a new generation of radiation hard detectors. This article reports on the status of the R&D projects on radiation hard silicon strips detectors for particle physics, linked to the Large Hadron Collider Upgrade, super-LHC (sLHC) of the ATLAS microstrip detector. The primary focus of this report is on measuring the radiation hardness of the silicon materials and the detectors under study. This involves designing silicon detectors, irradiating them to the sLHC radiation levels and studying their performance as particle detectors. The most promising silicon detector for the different radiation levels in the different regions of the ATLAS microstrip detector will be presented. Important challenges related to engineering layout, powering, cooling and reading out a very large strip detector are presented. Ideas on possible schemes for the layout and support mechanics will be shown.
Address IFIC UV CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mercedes.minano@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes ISI:000291659300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial (up) 651
Permanent link to this record