|   | 
Details
   web
Records
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P.
Title Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295 km Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 7 Pages 071103 - 10pp
Keywords
Abstract We perform a search for light sterile neutrinos using the data from the T2K far detector at a baseline of 295 km, with an exposure of 14.7(7.6) x 10(20) protons on target in neutrino (antineutrino) mode. A selection of neutral-current interaction samples is also used to enhance the sensitivity to sterile mixing. No evidence of sterile neutrino mixing in the 3 + 1 model was found from a simultaneous fit to the charged-current muon, electron and neutral-current neutrino samples. We set the most stringent limit on the sterile oscillation amplitude sin(2)theta(24 )for the sterile neutrino mass splitting Delta m(41)(2 )< 3 x 10(-3 )eV(2)/c(4).
Address [Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, E-28049 Madrid, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000466423400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 3996
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P.
Title Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 x 10(21) Protons on Target Type Journal Article
Year 2018 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 121 Issue 17 Pages 171802 - 9pp
Keywords
Abstract The T2K experiment measures muon neutrino disappearance and electron neutrino appearance in accelerator-produced neutrino and antineutrino beams. With an exposure of 14.7(7.6) x 10(20) protons on target in the neutrino (antineutrino) mode, 89 nu(e) candidates and seven anti-nu(e) candidates are observed, while 67.5 and 9.0 are expected for delta(CP) = 0 and normal mass ordering. The obtained 2 sigma confidence interval for the CP-violating phase, delta(CP), does not include the CP-conserving cases (delta(CP) = 0, pi). The best-fit values of other parameters are sin(2) theta(23) = 0.526(-0.036)(+0.032) and Delta m(32)(2) = 2.463(-0.070)(+0.071) x 10(-3) eV(2)/c(4).
Address [Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid 28049, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000448172000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 3773
Permanent link to this record
 

 
Author Alioli, S.; Fernandez, P.; Fuster, J.; Irles Quiles, A.; Moch, S.; Uwer, P.; Vos, M.
Title A new observable to measure the top-quark mass at hadron colliders Type Journal Article
Year 2013 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 73 Issue 5 Pages 2438 - 11pp
Keywords
Abstract A new method to measure the top-quark mass in high energetic hadron collisions is presented. We use theoretical predictions calculated at next-to-leading order accuracy in quantum chromodynamics to study the ( normalized) differential distribution of the t (t) over bar + 1-jet cross section with respect to its invariant mass root s(t (t) over barj). The sensitivity of the method to the top-quark mass together with the impact of various theoretical and experimental uncertainties has been investigated and quantified. The new method allows for a complementary measurement of the top-quark mass parameter and has a high potential to become competitive in precision with respect to established approaches. Furthermore we emphasize that in the proposed method the mass parameter is uniquely defined through one-loop renormalization.
Address LBNL, Berkeley, CA 94720 USA, Email: Peter.Uwer@physik.hu-berlin.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000319518900023 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 1468
Permanent link to this record