toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yaneva, A. et al; Algora, A. doi  openurl
  Title The shape of the Tz =+1 nucleus 94Pd and the role of proton-neutron interactions on the structure of its excited states Type Journal Article
  Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 855 Issue Pages 138805 - 7pp  
  Keywords gamma spectroscopy; Fast-timing gamma-ray coincidences; pn interaction; Isovector vs. isoscalar pairing; Shell model  
  Abstract Reduced transition probabilities have been extracted between excited, yrast states in the N = Z + 2 nucleus Pd-94. The transitions of interest were observed following decays of the I-pi = 14(+), E-x = 2129-keV isomeric state, which was populated following the projectile fragmentation of a Xe-124 primary beam at the GSI Helmholtzzentrum fur Schwerionenforschung accelerator facility as part of FAIR Phase-0. Experimental information regarding the reduced E2 transition strengths for the decays of the yrast 8(+) and 6(+) states was determined following isomer-delayed E-gamma 1 – E-gamma 2 – Delta T-2,T-1 coincidence method, using the LaBr3(Ce)-based FATIMA fast-timing coincidence gamma-ray array, which allowed direct determination of lifetimes of states in Pd-94 using the Generalized Centroid Difference (GCD) method. The experimental value for the half-life of the yrast 8(+) state of 755(106) ps results in a reduced transition probability of B(E2:8(+)-> 6(+)) = 205(-25)(+34) e(2) fm(4), which enables a precise verification of shell-model calculations for this unique system, lying directly between the N = Z line and the N = 50 neutron shell closure. The determined B(E2) value provides an insight into the purity of (g(9/2))(n) configurations in competition with admixtures from excitations between the (lower) N = 3pf and (higher) N = 4gds orbitals for the first time. The results indicate weak collectivity expected for near-zero quadrupole deformation and an increasing importance of the T = 0 proton-neutron interaction at N = 48.  
  Address [Yaneva, A.; Jolie, J.; Armstrong, M.; Blazhev, A.; Esmaylzadeh, A.; Karayonchev, V.; Regis, J. -m.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: a.yaneva@gsi.de  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001281910600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 6221  
Permanent link to this record
 

 
Author Figueroa, D.G.; Florio, A.; Torrenti, F. url  doi
openurl 
  Title Present and future of Cosmo Lattice Type Journal Article
  Year 2024 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 87 Issue 9 Pages 094901 - 20pp  
  Keywords early Universe; non-linear dynamics; real-time lattice simulations; cosmology; gauge-invariant lattice techniques; CosmoLattice; gravitational waves  
  Abstract We discuss the present state and planned updates of Cosmo Lattice, a cutting-edge code for lattice simulations of non-linear dynamics of scalar-gauge field theories in an expanding background. We first review the current capabilities of the code, including the simulation of interacting singlet scalars and of Abelian and non-Abelian scalar-gauge theories. We also comment on new features recently implemented, such as the simulation of gravitational waves from scalar and gauge fields. Secondly, we discuss new extensions of C osmo L attice that we plan to release publicly. We comment on new physics modules, which include axion-gauge interactions phi FF , non-minimal gravitational couplings phi R-2 , creation and evolution of cosmic-defect networks, and magnetohydrodynamics. We also discuss new technical features, including evolvers for non-canonical interactions, arbitrary initial conditions, simulations in 2+1 dimensions, and higher-accuracy spatial derivatives.  
  Address [Figueroa, Daniel G.; Torrenti, Francisco] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: daniel.figueroa@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001284570700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 6219  
Permanent link to this record
 

 
Author Bottoni, S. et al; Gadea, A.; Perez-Vidal, R. M. doi  openurl
  Title Search for the γ decay of the narrow near-threshold proton resonance in 11B Type Journal Article
  Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 855 Issue Pages 138851 - 4pp  
  Keywords 11B; Near-threshold resonance; gamma-ray decay; Continuum shell model  
  Abstract The y decay of the elusive narrow, near-threshold proton resonance in 11 B was investigated at Laboratori Nazionali di Legnaro (INFN) in a particle-y coincidence experiment, using the 6 Li( 6 Li,py) fusion-evaporation reaction and the GALILEO-GALTRACE setup. No clear signature was found for a possible E1 decay to the 1/2-1, – 1 , first-excited state of 11 B, predicted by the Shell Model Embedded in the Continuum (SMEC) with a branching of 0.98+167 +167 -69 x 10-3 -3 with respect to the dominant particle-decaying modes. The statistical analysis of the y-ray spectrum provided an average upper limit of 2.37 x 10-3 -3 for this y-ray branching, with a global significance of 5 sigma. On the other hand, by imposing a global confidence level of 3 sigma, a significant excess of counts was observed for Ey y = 9300(20) keV, corresponding to a resonance energy of 11429(20) keV (namely 200(20) keV above the proton separation energy of 11 B) and a y-ray branching of 1.12(35) x10-3. -3 . This result is compatible with the SMEC calculations, potentially supporting the existence of a near-threshold proton resonance in 11 B.  
  Address [Bottoni, S.; Corbari, G.; Leoni, S.; Capra, S.; Albanese, E.; Ziliani, S.; Bracco, A.; Camera, F.; Crespi, F. C. L.; Gamba, E.; Polettini, M.; Porzio, C.] Univ Milano 1, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy, Email: simone.bottoni@mi.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001272132000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 6205  
Permanent link to this record
 

 
Author Di Gregorio, E.; Staelens, M.; Hosseinkhah, N.; Karimpoor, M.; Liburd, J.; Lim, L.; Shankar, K.; Tuszynski, J.A. url  doi
openurl 
  Title Raman Spectroscopy Reveals Photobiomodulation-Induced α-Helix to β-Sheet Transition in Tubulins: Potential Implications for Alzheimer's and Other Neurodegenerative Diseases Type Journal Article
  Year 2024 Publication Nanomaterials Abbreviated Journal Nanomaterials  
  Volume 14 Issue 13 Pages 1093 - 21pp  
  Keywords proteins; protein dynamics; protein structure; non-invasive therapies; low-level laser therapy; spectroscopy; amide bands; amide I; spectral decomposition  
  Abstract In small clinical studies, the application of transcranial photobiomodulation (PBM), which typically delivers low-intensity near-infrared (NIR) to treat the brain, has led to some remarkable results in the treatment of dementia and several neurodegenerative diseases. However, despite the extensive literature detailing the mechanisms of action underlying PBM outcomes, the specific mechanisms affecting neurodegenerative diseases are not entirely clear. While large clinical trials are warranted to validate these findings, evidence of the mechanisms can explain and thus provide credible support for PBM as a potential treatment for these diseases. Tubulin and its polymerized state of microtubules have been known to play important roles in the pathology of Alzheimer's and other neurodegenerative diseases. Thus, we investigated the effects of PBM on these cellular structures in the quest for insights into the underlying therapeutic mechanisms. In this study, we employed a Raman spectroscopic analysis of the amide I band of polymerized samples of tubulin exposed to pulsed low-intensity NIR radiation (810 nm, 10 Hz, 22.5 J/cm2 dose). Peaks in the Raman fingerprint region (300-1900 cm-1)-in particular, in the amide I band (1600-1700 cm-1)-were used to quantify the percentage of protein secondary structures. Under this band, hidden signals of C=O stretching, belonging to different structures, are superimposed, producing a complex signal as a result. An accurate decomposition of the amide I band is therefore required for the reliable analysis of the conformation of proteins, which we achieved through a straightforward method employing a Voigt profile. This approach was validated through secondary structure analyses of unexposed control samples, for which comparisons with other values available in the literature could be conducted. Subsequently, using this validated method, we present novel findings of statistically significant alterations in the secondary structures of polymerized NIR-exposed tubulin, characterized by a notable decrease in alpha-helix content and a concurrent increase in beta-sheets compared to the control samples. This PBM-induced alpha-helix to beta-sheet transition connects to reduced microtubule stability and the introduction of dynamism to allow for the remodeling and, consequently, refreshing of microtubule structures. This newly discovered mechanism could have implications for reducing the risks associated with brain aging, including neurodegenerative diseases like Alzheimer's disease, through the introduction of an intervention following this transition.  
  Address [Di Gregorio, Elisabetta; Staelens, Michael; Tuszynski, Jack A.] Univ Alberta, Fac Sci, Dept Phys, Edmonton, AB T6G 2E1, Canada, Email: michael.staelens@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001269841000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 6204  
Permanent link to this record
 

 
Author Agius, D.; Essig, R.; Gaggero, D.; Scarcella, F.; Suczewski, G.; Valli, M. url  doi
openurl 
  Title Feedback in the dark: a critical examination of CMB bounds on primordial black holes Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 003 - 36pp  
  Keywords accretion; cosmological parameters from CMBR; dark matter theory; primordial black holes  
  Abstract If present in the early universe, primordial black holes (PBHs) would have accreted matter and emitted high-energy photons, altering the statistical properties of the Cosmic Microwave Background (CMB). This mechanism has been used to constrain the fraction of dark matter that is in the form of PBHs to be much smaller than unity for PBH masses well above one solar mass. Moreover, the presence of dense dark matter mini -halos around the PBHs has been used to set even more stringent constraints, as these would boost the accretion rates. In this work, we critically revisit CMB constraints on PBHs taking into account the role of the local ionization of the gas around them. We discuss how the local increase in temperature around PBHs can prevent the dark matter mini -halos from strongly enhancing the accretion process, in some cases significantly weakening previously derived CMB constraints. We explore in detail the key ingredients of the CMB bound and derive a conservative limit on the cosmological abundance of massive PBHs.  
  Address [Agius, Dominic] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: dominic.agius@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001262242300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 6187  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva