toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gerbino, M. et al; Martinez-Mirave, P.; Mena, O.; Tortola, M.; Valle, J.W. . url  doi
openurl 
  Title Synergy between cosmological and laboratory searches in neutrino physics Type Journal Article
  Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 42 Issue Pages 101333 - 36pp  
  Keywords Neutrinos; Cosmology; Neutrino phenomenology  
  Abstract The intersection of the cosmic and neutrino frontiers is a rich field where much discovery space still remains. Neutrinos play a pivotal role in the hot big bang cosmology, influencing the dynamics of the universe over numerous decades in cosmological history. Recent studies have made tremendous progress in understanding some properties of cosmological neutrinos, primarily their energy density. Upcoming cosmological probes will measure the energy density of relativistic particles with higher precision, but could also start probing other properties of the neutrino spectra. When convolved with results from terrestrial experiments, cosmology can become even more acute at probing new physics related to neutrinos or even Beyond the Standard Model (BSM). Any discordance between laboratory and cosmological data sets may reveal new BSM physics and/or suggest alternative models of cosmology. We give examples of the intersection between terrestrial and cosmological probes in the neutrino sector, and briefly discuss the possibilities of what different laboratory experiments may see in conjunction with cosmological observatories.  
  Address [Gerbino, Martina; Lattanzi, Massimiliano; Brinckmann, Thejs] INFN, Sez Ferrara, I-44122 Ferrara, Italy, Email: gerbinom@fe.infn.it;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001112368600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 5854  
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 7 Pages 618 - 25pp  
  Keywords  
  Abstract The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 +/- 0.6% and 84.1 +/- 0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.  
  Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: leigh.howard.whitehead@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001061746600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 5721  
Permanent link to this record
 

 
Author Barenboim, G.; Martinez-Mirave, P.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Neutrino CPT violation in the solar sector Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 3 Pages 035039 - 10pp  
  Keywords  
  Abstract In this paper, we place new bounds on CPT violation in the solar neutrino sector analyzing the results from solar experiments and KamLAND. We also discuss the sensitivity of the next-generation experiments DUNE and Hyper-Kamiokande, which will provide accurate measurements of the solar neutrino oscillation parameters. The joint analysis of both experiments will further improve the precision due to cancellations in the systematic uncertainties regarding the solar neutrino flux. In combination with the next-generation reactor experiment JUNO, the bound on CPT violation in the solar sector could be improved by 1 order of magnitude in comparison with current constraints. The distinguishability among CPT-violating neutrino oscillations and neutrino nonstandard interactions in the solar sector is also addressed.  
  Address [Barenboim, G.; Martinez-Mirave, P.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular, CSIC, Carrer Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: gabriela.barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001065884700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 5692  
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Benitez Montiel, C.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Lopez March, N.; Martin-Albo, J.; Martinez Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Soto-Oton, J.; Tortola, M.; Tuzi, M.; Valle, J.W.F.; Yahlali, N. url  doi
openurl 
  Title Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 11 Pages 112012 - 25pp  
  Keywords  
  Abstract A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the Oo10 thorn MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the & nu;e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section & sigma;oE & nu; thorn for charged-current & nu;e absorption on argon. In the context of a simulated extraction of supernova & nu;e spectral parameters from a toy analysis, we investigate the impact of & sigma;oE & nu; thorn modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on & sigma;oE & nu; thorn must be substantially reduced before the & nu;e flux parameters can be extracted reliably; in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10% bias with DUNE requires & sigma;oE & nu; thorn to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of & sigma;oE & nu; thorn . A direct measurement of low-energy & nu;e-argon scattering would be invaluable for improving the theoretical precision to the needed level.  
  Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001063367400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 5669  
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 9 Pages 092012 - 22pp  
  Keywords  
  Abstract Measurements of electrons from ?e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.  
  Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: zdjurcic@anl.gov;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001010953400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial (down) 5588  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva