Bombacigno, F., De Angelis, M., van de Bruck, C., & Giare, W. (2025). Inflation in non-local hybrid metric-Palatini gravity. J. Cosmol. Astropart. Phys., 05(5), 025–30pp.
Abstract: Within the framework of hybrid metric-Palatini gravity, we incorporate non-localities introduced via the inverse of the d'Alembert operators acting on the scalar curvature. We analyze the dynamical structure of the theory and, adopting a scalar-tensor perspective, assess the stability conditions to ensure the absence of ghost instabilities. Focusing on a special class of well-defined hybrid actions where local and non-local contributions are carried by distinct types of curvature we investigate the feasibility of inflation within the resulting Einstein-frame multi-field scenario. We examine how the non-minimal kinetic couplings between the fields, reflecting the non-local structure of the original frame, influence the number of e-folds and the field trajectories. To clarify the physical interpretation of our results, we draw analogies with benchmark single-field inflation scenarios that include spectator fields.
|
Guendelman, E. I., Olmo, G. J., Rubiera-Garcia, D., & Vasihoun, M. (2013). Nonsingular electrovacuum solutions with dynamically generated cosmological constant. Phys. Lett. B, 726(4-5), 870–875.
Abstract: We consider static spherically symmetric configurations in a Palatini extension of General Relativity including R-2 and Ricci-squared terms, which is known to replace the central singularity by a wormhole in the electrovacuum case. We modify the matter sector of the theory by adding to the usual Maxwell term a nonlinear electromagnetic extension which is known to implement a confinement mechanism in flat space. One feature of the resulting theory is that the nonlinear electric field leads to a dynamically generated cosmological constant. We show that with this matter source the solutions of the model are asymptotically de Sitter and possess a wormhole topology. We discuss in some detail the conditions that guarantee the absence of singularities and of traversable wormholes.
|
Capozziello, S., Harko, T., Koivisto, T. S., Lobo, F. S. N., & Olmo, G. J. (2013). Galactic rotation curves in hybrid metric-Palatini gravity. Astropart Phys., 50-52, 65–75.
Abstract: Generally, the dynamics of test particles around galaxies, as well as the corresponding mass deficit, is explained by postulating the existence of a hypothetical dark matter. In fact, the behavior of the rotation curves shows the existence of a constant velocity region, near the baryonic matter distribution, followed by a quick decay at large distances. In this work, we consider the possibility that the behavior of the rotational velocities of test particles gravitating around galaxies can be explained within the framework of the recently proposed hybrid metric-Palatini gravitational theory. The latter is constructed by modifying the metric Einstein-Hilbert action with an f(R) term in the Palatini formalism. It was shown that the theory unifies local constraints and the late-time cosmic acceleration, even if the scalar field is very light. In the intermediate galactic scale, we show explicitly that in the hybrid metric-Palatini model the tangential velocity can be explicitly obtained as a function of the scalar field of the equivalent scalar-tensor description. The model predictions are compared model with a small sample of rotation curves of low surface brightness galaxies, respectively, and a good agreement between the theoretical rotation Curves and the observational data is found. The possibility of constraining the form of the scalar field and the parameters of the model by using the stellar velocity dispersions is also analyzed. Furthermore, the Doppler velocity shifts are also obtained in terms of the scalar field. All the physical and geometrical quantities and the numerical parameters in the hybrid metric-Palatini model can be expressed in terms of observable/measurable parameters, such as the tangential velocity, the baryonic mass of the galaxy, the Doppler frequency shifts, and the stellar dispersion velocity, respectively. Therefore, the obtained results open the possibility of testing the hybrid metric-Palatini gravitational models at the galactic or extra-galactic scale by using direct astronomical and astrophysical observations.
|
Lobo, F. S. N., Martinez-Asencio, J., Olmo, G. J., & Rubiera-Garcia, D. (2014). Planck scale physics and topology change through an exactly solvable model. Phys. Lett. B, 731, 163–167.
Abstract: We consider the collapse of a charged radiation fluid in a Planck-suppressed quadratic extension of General Relativity (GR) formulated A la Palatini. We obtain exact analytical solutions that extend the charged Vaidya-type solution of GR, which allows to explore in detail new physics at the Planck scale. Starting from Minkowski space, we find that the collapsing fluid generates wormholes supported by the electric field. We discuss the relevance of our findings in relation to the quantum foam structure of space-time and the meaning of curvature divergences in this theory.
|
Olmo, G. J., & Rubiera-Garcia, D. (2015). Brane-world and loop cosmology from a gravity-matter coupling perspective. Phys. Lett. B, 740, 73–79.
Abstract: We show that the effective brane-world and the loop quantum cosmology background expansion histories can be reproduced from a modified gravity perspective in terms of an f (R) gravity action plus a g(R) term non-minimally coupled with the matter Lagrangian. The reconstruction algorithm that we provide depends on a free function of the matter density that must be specified in each case and allows to obtain analytical solutions always. In the simplest cases, the function f (R) is quadratic in the Ricci scalar, R, whereas g(R) is linear. Our approach is compared with recent results in the literature. We show that working in the Palatini formalism there is no need to impose any constraint that keeps the equations second order, which is a key requirement for the successful implementation of the reconstruction algorithm.
|