|   | 
Details
   web
Records
Author Casas, J.A.; Gomez Vargas, G.A.; Moreno, J.M.; Quilis, J.; Ruiz de Austri, R.
Title Extended Higgs-portal dark matter and the Fermi-LAT Galactic Center Excess Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 031 - 16pp
Keywords dark matter theory; dark matter experiments
Abstract In the present work, we show that the Galactic Center Excess (GCE) emission, as recently updated by the Fermi-LAT Collaboration, could be explained by a mixture of Fermi bubbles-like emission plus dark matter (DM) annihilation, in the context of a scalar-singlet Higgs portal scenario (SHP). In fact, the standard SHP, where the DM particle, S, only has renormalizable interactions with the Higgs, is non-operational due to strong constraints, especially from DM direct detection limits. Thus we consider the most economical extension, called ESHP (for extended SHP), which consists solely in the addition of a second (more massive) scalar singlet in the dark sector. The second scalar can be integrated-out, leaving a standard SHP plus a dimension-6 operator. Mainly, this model has only two relevant parameters (the DM mass and the coupling of the dim-6 operator). DM annihilation occurs mainly into two Higgs bosons, SS -> hh. We demonstrate that, despite its economy, the ESHP model provides an excellent fit to the GCE (with p-value similar to 0.6-0.7) for very reasonable values of the parameters, in particular, ms similar or equal to 130 GeV. This agreement of the DM candidate to the GCE properties does not clash with other observables and keep the S – particle relic density at the accepted value for the DM content in the universe.
Address [Casas, J. A.; Moreno, J. M.; Quilis, J.] Univ Autonoma Madrid, Inst Fis Teor, CSIC, E-28049 Madrid, Spain, Email: j.alberto.casas@gmail.com;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000435710700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3626
Permanent link to this record
 

 
Author Folgado, M.G.; Gomez-Vargas, G.A.; Rius, N.; Ruiz de Austri, R.
Title Probing the sterile neutrino portal to Dark Matter with gamma rays Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 002 - 20pp
Keywords dark matter theory; particle physics – cosmology connection; neutrino theory
Abstract Sterile neutrinos could provide a link between the Standard Model particles and a dark sector, besides generating active neutrino masses via the seesaw mechanism type I. We show that, if dark matter annihilation into sterile neutrinos determines its observed relic abundance, it is possible to explain the Galactic Center gamma-ray excess reported by the Fermi-LAT Collaboration as due to an astrophysical component plus dark matter annihilations. We observe that sterile neutrino portal to dark matter provides an impressively good fit, with a p-value of 0.78 in the best fit point, to the Galactic Center gamma-ray flux, for DM masses in the range (40-80) GeV and sterile neutrino masses 20 GeV less than or similar to M-N < M-DM. Such values are compatible with the limits from Fermi-LAT observations of the dwarfs spheroidal galaxies in the Milky Way halo, which rule out dark matter masses below similar to 50 GeV ( 90 GeV), for sterile neutrino masses M-N less than or similar to MDM ( M-N << M-DM). We also estimate the impact of AMS-02 anti-proton data on this scenario.
Address [Folgado, Miguel G.; Rius, Nuria; Ruiz de Austri, Roberto] Univ Valencia, CSIC, Dept Fis Teor, C-Catedratico Jose Beltran 2, E-46980 Paterna, Spain, Email: migarfol@ific.uv.es;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000440591500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3681
Permanent link to this record
 

 
Author Amoroso, S.; Caron, S.; Jueid, A.; Ruiz de Austri, R.; Skands, P.
Title Estimating QCD uncertainties in Monte Carlo event generators for gamma-ray dark matter searches Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 007 - 44pp
Keywords dark matter simulations; dark matter theory; gamma ray theory
Abstract Motivated by the recent galactic center gamma-ray excess identified in the Fermi-LAT data, we perform a detailed study of QCD fragmentation uncertainties in the modeling of the energy spectra of gamma-rays from Dark-Matter (DM) annihilation. When Dark-Matter particles annihilate to coloured final states, either directly or via decays such as W(*) -> qq-', photons are produced from a complex sequence of shower, hadronisation and hadron decays. In phenomenological studies their energy spectra are typically computed using Monte Carlo event generators. These results have however intrinsic uncertainties due to the specific model used and the choice of model parameters, which are difficult to asses and which are typically neglected. We derive a new set of hadronisation parameters (tunes) for the PYTHIA 8.2 Monte Carlo generator from a fit to LEP and SLD data at the Z peak. For the first time we also derive a conservative set of uncertainties on the shower and hadronisation model parameters. Their impact on the gamma-ray energy spectra is evaluated and discussed for a range of DM masses and annihilation channels. The spectra and their uncertainties are also provided in tabulated form for future use. The fragmentation-parameter uncertainties may be useful for collider studies as well.
Address [Amoroso, Simone] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: simone.amoroso@desy.de;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000467288200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4006
Permanent link to this record
 

 
Author Lopez-Fogliani, D.E.; Perez, A.D.; Ruiz de Austri, R.
Title Dark matter candidates in the NMSSM with RH neutrino superfields Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 067 - 35pp
Keywords dark matter theory; dark matter detectors
Abstract R-parity conserving supersymmetric models with right-handed (RH) neutrinos are very appealing since they could naturally explain neutrino physics and also provide a good dark matter (DM) candidate such as the lightest supersymmetric particle (LSP). In this work we consider the next-to-minimal supersymmetric standard model (NMSSM) plus RH neutrino superfields, with effective Majorana masses dynamically generated at the electroweak scale (EW). We perform a scan of the relevant parameter space and study both possible DM candidates: RH sneutrino and neutralino. Especially for the case of RH sneutrino DM we analyse the intimate relation between both candidates to obtain the correct amount of relic density. Besides the well-known resonances, annihilations through scalar quartic couplings and coannihilation mechanisms with all kind of neutralinos, are crucial. Finally, we present the impact of current and future direct and indirect detection experiments on both DM candidates.
Address [Lopez-Fogliani, Daniel E.] Univ Buenos Aires, Fac Ciencia Exactas & Nat, Inst Fis Buenos Aires UBA, RA-1428 Buenos Aires, DF, Argentina, Email: daniel.lopez@df.uba.ar;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000644501000049 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4824
Permanent link to this record
 

 
Author Kim, J.S.; Lopez-Fogliani, D.E.; Perez, A.D.; Ruiz de Austri, R.
Title Right-handed sneutrino and gravitino multicomponent dark matter in light of neutrino detectors Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 050 - 32pp
Keywords dark matter theory; dark matter experiments; neutrino detectors
Abstract We investigate the possibility that right-handed (RH) sneutrinos and gravitinos can coexist and explain the dark matter (DM) problem. We compare extensions of the minimal supersymmetric standard model (MSSM) and the next-to-MSSM (NMSSM) adding RH neutrinos superfields, with special emphasis on the latter. If the gravitino is the lightest supersymmetric particle (LSP) and the RH sneutrino the next-to-LSP (NLSP), the heavier particle decays to the former plus left-handed (LH) neutrinos through the mixing between the scalar partners of the LH and RH neutrinos. However, the interaction is suppressed by the Planck mass, and if the LH-RH sneutrino mixing parameter is small, << O(10-2), a long-lived RH sneutrino NLSP is possible even surpassing the age of the Universe. As a byproduct, the NLSP to LSP decay produces monochromatic neutrinos in the ballpark of current and planned neutrino telescopes like Super-Kamiokande, IceCube and Antares that we use to set constraints and show prospects of detection. In the NMSSM+RHN, assuming a gluino mass parameter M3 = 3 TeV we found the following lower limits for the gravitino mass m3/2 >= 1-600 GeV and the reheating temperature TR >= 105-3 x 107 GeV, for m nu similar to R similar to 10-800 GeV. If we take M3 = 10 TeV, then the limits on TR are relaxed by one order of magnitude.
Address [Kim, Jong Soo] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa, Email: jongsoo.kim@tu-dortmund.de;
Corporate Author Thesis
Publisher (down) IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000975382300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5523
Permanent link to this record