|   | 
Details
   web
Records
Author Yao, D.L.; Fernandez-Soler, P.; Albaladejo, M.; Guo, F.K.; Nieves, J.
Title Heavy-to-light scalar form factors from Muskhelishvili-Omnes dispersion relations Type Journal Article
Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 78 Issue 4 Pages 310 - 26pp
Keywords
Abstract By solving the Muskhelishvili-Omnes integral equations, the scalar form factors of the semileptonic heavy meson decays D -> pi(l) over bar nu(l), D -> (K) over bar(l) over bar nu(l), (K) over bar -> pi(l) over bar nu(l) and (B) over bar (s) -> Kl (nu) over bar (l) are simultaneously studied. As input, we employ unitarized heavy meson-Goldstone boson chiral coupled-channel amplitudes for the energy regions not far from thresholds, while, at high energies, adequate asymptotic conditions are imposed. The scalar form factors are expressed in terms of Omn\`es matrices multiplied by vector polynomials, which contain some undetermined dispersive subtraction constants. We make use of heavy quark and chiral symmetries to constrain these constants, which are fitted to lattice QCD results both in the charm and the bottom sectors, and in this latter sector to the light-cone sum rule predictions close to q(2)=0 as well. We find a good simultaneous description of the scalar form factors for the four semileptonic decay reactions. From this combined fit, and taking advantage that scalar and vector form factors are equal at q(2)=0, we obtain |V-cd| = 0.244 +/- 0.022, |V-cs| = 0.945 +/- 0.041 and |V-ub| = (4.3 +/- 0.7)x10(-3) for the involved Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In addition, we predict the following vector form factors at q(2) = 0: |f(+)(D ->eta)(0)| = 0.01 +/- 0.05, |f(+)(Ds ->eta)(0)| = 0.50 +/- 0.08, |f(+)(Ds ->eta)(0)| = 0.73 +/- 0.03 and|f(+)((B) over bar ->eta)(0)| = 0.82 +/- 0.08, which might serve as alternatives to determine the CKM elements when experimental measurements of the corresponding differential decay rates become available. Finally, we predict the different form factors above the q(2)-regions accessible in the semileptonic decays, up to moderate energies amenable to be described using the unitarized coupled-channel chiral approach.
Address [Yao, D. -L.; Fernandez-Soler, P.; Nieves, J.] UV, Inst Invest Paterna, Ctr Mixto, Inst Fis Corpuscular,CSIC, Apartado 22085, Valencia, Spain, Email: deliang.yao@ific.uv.es;
Corporate Author Thesis
Publisher (down) Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000430575000006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3568
Permanent link to this record
 

 
Author Du, M.L.; Baru, V.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Oller, J.A.; Wang, Q.
Title Revisiting the nature of the P-c pentaquarks Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 157 - 50pp
Keywords QCD Phenomenology; Non-perturbative renormalization
Abstract The nature of the three narrow hidden-charm pentaquark P-c states, i.e., P-c (4312), P-c (4440) and P-c (4457), is under intense discussion since their discovery from the updated analysis of the process Lambda(0)(b) -> I ) J/psi pK(-) by LHCb. In this work we extend our previous coupled-channel approach [Phys. Rev. Lett. 124, 072001 (2020)], in which the Pc states are treated as Sigma(()(c)*()) (D) over bar (()*()) molecules, by including the Lambda(c)(D) over bar (()*()) and eta(c)p as explicit inelastic channels in addition to the J/psi p, as required by unitarity and heavy quark spin symmetry (HQSS), respectively. Since inelastic parameters are very badly constrained by the current data, three calculation schemes are considered: (a) scheme I with pure contact interactions between the elastic, i.e., Sigma(()(c)*()) (D) over bar (()*()), and inelastic channels and without the Lambda(c)(D) over bar (()*()) interactions, (b) scheme II, where the one-pion exchange (OPE) is added to scheme I, and (c) scheme III, where the Lambda(c)(D) over bar (()*()) interactions are included in addition. It is shown that to obtain cutoff independent results, OPE in the multichannel system is to be supplemented with S-wave-to-D-wave mixing contact terms. As a result, in line with our previous analysis, we demonstrate that the experimental data for the J/psi p invariant mass distribution are consistent with the interpretation of the P-c(4312) and P-c(4440)/P-c(4457) as Sigma(c)(D) over bar and Sigma(c)(D) over bar* hadronic molecules, respectively, and that the data show clear evidence for a new narrow state, P-c(4380), identified as a Sigma(c)*(D) over bar molecule, which should exist as a consequence of HQSS. While two statistically equally good solutions are found in scheme I, only one of these solutions with the quantum numbers of the P-c (4440) and P-c (4457) being J(P) = 3/2(-) and 1/2(-), respectively, survives the requirement of regulator independence once the OPE is included. Moreover, we predict the line shapes in the elastic and inelastic channels and demonstrate that those related to the P-c (4440) and the P-c (4457) in the Sigma(()(c)*())<(D)over ( )anf eta(c)p mass distributions from Lambda(0)(b) ->( )Sigma(()(c)*()) (D) over barK(-) and Lambda(0)(b) -> eta(c)pK(-) will shed light on the quantum numbers of those states, once the data are available. We also investigate possible pentaquark signals in the Lambda(c)(D) over bar (()*()) final states.
Address [Du, Meng-Lin; Meissner, Ulf-G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: du@hiskp.uni-bonn.de
Corporate Author Thesis
Publisher (down) Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000693090600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4958
Permanent link to this record
 

 
Author Shi, P.P.; Baru, V.; Guo, F.K.; Hanhart, C.; Nefediev, A.
Title Production of the X(4014) as the Spin-2 Partner of X(3872) in e + e – Collisions Type Journal Article
Year 2024 Publication Chinese Physics Letters Abbreviated Journal Chin. Phys. Lett.
Volume 41 Issue 3 Pages 031301 - 7pp
Keywords
Abstract In 2021, the Belle collaboration reported the first observation of a new structure in the psi(2S)gamma final state produced in the two-photon fusion process. In the hadronic molecule picture, this new structure can be associated with the shallow isoscalar D*D* bound state and as such is an excellent candidate for the spin-2 partner of the X(3872) with the quantum numbers J(PC) = 2(++) conventionally named X-2. In this work we evaluate the electronic width of this new state and argue that its nature is sensitive to its total width, the experimental measurement currently available being unable to distinguish between different options. Our estimates demonstrate that the planned Super tau-Charm Facility offers a promising opportunity to search for and study this new state in the invariant mass distributions for the final states J/psi gamma and psi(2S)gamma.
Address [Shi, Pan-Pan; Guo, Feng-Kun] Chinese Acad Sci, CAS Key Lab Theoret Phys, Inst Theoret Phys, Beijing 100190, Peoples R China, Email: panpan@ific.uv.es;
Corporate Author Thesis
Publisher (down) IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0256-307x ISBN Medium
Area Expedition Conference
Notes WOS:001189846900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6051
Permanent link to this record
 

 
Author Albaladejo, M.; Guo, F.K.; Hidalgo-Duque, C.; Nieves, J.
Title Z(c)(3900): What has been really seen? Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 755 Issue Pages 337-342
Keywords
Abstract The Z(c)(+/-)(3900)/Z(c)(+/-)(3885) resonant structure has been experimentally observed in the Y(4260) -> J/Psi pi pi and Y(4260) -> (D) over bar* D pi decays. This structure is intriguing since it is a prominent candidate of an exotic hadron. Yet, its nature is unclear so far. In this work, we simultaneously describe the (D) over bar* D and J/Psi pi invariant mass distributions in which the Z(c) peak is seen using amplitudes with exact unitarity. Two different scenarios are statistically acceptable, where the origin of the Z(c) state is different. They correspond to using energy dependent or independent (D) over bar *D S-wave interaction. In the first one, the Z(c) peak is due to a resonance with a mass around the D (D) over bar* threshold. In the second one, the Z(c) peak is produced by a virtual state which must have a hadronic molecular nature. In both cases the two observations, Z(c)(+/-)(3900) and Z(c)(+/-)(3885), are shown to have the same common origin, and a (D) over bar *D bound state solution is not allowed. Precise measurements of the line shapes around the D (D) over bar* threshold are called for in order to understand the nature of this state.
Address [Albaladejo, Miguel; Hidalgo-Duque, Carlos; Nieves, Juan] Ctr Mixto CSIC Univ Valencia, Inst Invest Paterna, Inst Fis Corpuscular, Aptd 22085, E-46071 Valencia, Spain, Email: Miguel.Albaladejo@ific.uv.es
Corporate Author Thesis
Publisher (down) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000373568100047 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2711
Permanent link to this record
 

 
Author Albaladejo, M.; Fernandez-Soler, P.; Guo, F.K.; Nieves, J.
Title Two-pole structure of the D-0*(2400) Type Journal Article
Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 767 Issue Pages 465-469
Keywords
Abstract The so far only known charmed non-strange scalar meson is dubbed as D-0(*)(2400) in the Review of Particle Physics. We show, within the framework of unitarized chiral perturbation theory, that there are in fact two (I = 1/2, J(P) = 0(+)) poles in the region of the D-0(*)( 2400) in the coupled-channel D pi, D eta and D-s (K) over bar scattering amplitudes. With all the parameters previously fixed, we predict the energy levels for the coupled-channel system in a finite volume, and find that they agree remarkably well with recent lattice QCD calculations. This successful description of the lattice data is regarded as a strong evidence for the two-pole structure of the D-0(*)( 2400). With the physical quark masses, the poles are located at (2105(-8)(+6) – i102(-12)(+10)) MeV and (2451(-26)(+36) – i134(-8)(+7)) MeV, with the largest couplings to the D pi and D-s (K) over bar channels, respectively. Since the higher pole is close to the D-s (K) over bar threshold, we expect it to show up as a threshold enhancement in the D-s (K) over bar invariant mass distribution. This could be checked by high-statistic data in future experiments. We also show that the lower pole belongs to the same SU(3) multiplet as the D-s0(*)(2317) state. Predictions for partners in the bottom sector are also given.
Address [Albaladejo, Miguel; Fernandez-Soler, Pedro; Nieves, Juan] Univ Valencia, Ctr Mixto CSIC, Inst Invest Paterna, Inst Fis Corpuscular IFIC, Aptd 22085, E-46071 Valencia, Spain, Email: albaladejo@um.es;
Corporate Author Thesis
Publisher (down) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000397861700070 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3025
Permanent link to this record