|   | 
Details
   web
Records
Author AMON and ANTARES Collaborations (Ayala Solares, H.A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title A Search for Cosmic Neutrino and Gamma-Ray Emitting Transients in 7.3 yr of ANTARES and Fermi LAT Data Type Journal Article
Year 2019 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 886 Issue 2 Pages 98 - 8pp
Keywords BL Lacertae objects: general; cosmic rays; gamma-ray burst: general; gamma rays: general; neutrinos
Abstract We analyze 7.3 yr of ANTARES high-energy neutrino and Fermi Large Area Telescope (LAT) gamma-ray data in search of cosmic neutrino + gamma-ray (nu + gamma) transient sources or source populations. Our analysis has the potential to detect either individual nu + gamma transient sources (durations delta t less than or similar to 1000 s), if they exhibit sufficient gamma-ray or neutrino multiplicity, or a statistical excess of nu + gamma transients of individually lower multiplicities. Individual high gamma-ray multiplicity events could be produced, for example, by a single ANTARES neutrino in coincidence with a LAT-detected gamma-ray burst. Treating ANTARES track and cascade event types separately, we establish detection thresholds by Monte Carlo scrambling of the neutrino data, and determine our analysis sensitivity by signal injection against these scrambled data sets. We find our analysis is sensitive to nu + gamma transient populations responsible for >5% of the observed gamma-coincident neutrinos in the track data at 90% confidence. Applying our analysis to the unscrambled data reveals no individual nu + gamma events of high significance; two ANTARES track + Fermi gamma-ray events are identified that exceed a once per decade false alarm rate threshold (p = 17%). No evidence for subthreshold nu + gamma source populations is found among the track (p = 39%) or cascade (p = 60%) events. Exploring a possible correlation of high-energy neutrino directions with Fermi gamma-ray sky brightness identified in previous work yields no added support for this correlation. While TXS.0506+056, a blazar and variable (nontransient) Fermi gamma-ray source, has recently been identified as the first source of high-energy neutrinos, the challenges in reconciling observations of the Fermi gamma-ray sky, the IceCube high-energy cosmic neutrinos, and ultrahigh-energy cosmic rays using only blazars suggest a significant contribution by other source populations. Searches for transient sources of high-energy neutrinos thus remain interesting, with the potential for either neutrino clustering or multimessenger coincidence searches to lead to discovery of the first nu + gamma transients.
Address [Solares, H. A. Ayala; Cowen, D. F.; DeLaunay, J. J.; Keivani, A.; Mostafa, M.; Murase, K.; Turley, C. F.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA, Email: cft114@psu.edu
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000503245500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4227
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title HAWC J2227+610 and Its Association with G106.3+2.7, a New Potential Galactic PeVatron Type Journal Article
Year 2020 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 896 Issue 2 Pages L29 - 9pp
Keywords Gamma-ray astronomy; Gamma-ray sources; Gamma-rays; Cosmic ray sources; Supernova remnants; Gamma-ray observatories
Abstract We present the detection of very-high-energy gamma-ray emission above 100 TeV from HAWC J2227+610 with the High-Altitude Water Cherenov Gamma-Ray Observatory (HAWC) observatory. Combining our observations with previously published results by the Very Energetic Radiation Imaging Telescope Array System (VERTIAS), we interpret the gamma-ray emission from HAWC J2227+610 as emission from protons with a lower limit in their cutoff energy of 800 TeV. The most likely source of the protons is the associated supernova remnant G106.3+2.7, making it a good candidate for a Galactic PeVatron. However, a purely leptonic origin of the observed emission cannot be excluded at this time.
Address [Albert, A.; Dingus, B. L.; Harding, J. P.; Malone, K.; Sinnis, G.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: hfleisch@mtu.edu
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000542724600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4445
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title 3HWC: The Third HAWC Catalog of Very-high-energy Gamma-Ray Sources Type Journal Article
Year 2020 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 905 Issue 1 Pages 76 - 14pp
Keywords Gamma-ray astronomy; Gamma-ray observatories; High energy astrophysics; Cosmic ray sources
Abstract We present a new catalog of TeV gamma-ray sources using 1523 days of data from the High-Altitude Water Cherenkov (HAWC) Observatory. The catalog represents the most sensitive survey of the northern gamma-ray sky at energies above several TeV, with three times the exposure compared to the previous HAWC catalog, 2HWC. We report 65 sources detected at >= 5 sigma significance, along with the positions and spectral fits for each source. The catalog contains eight sources that have no counterpart in the 2HWC catalog, but are within 1 degrees of previously detected TeV emitters, and 20 sources that are more than 1 degrees away from any previously detected TeV source. Of these 20 new sources, 14 have a potential counterpart in the fourth Fermi Large Area Telescope catalog of gamma-ray sources. We also explore potential associations of 3HWC sources with pulsars in the Australia Telescope National Facility (ATNF) pulsar catalog and supernova remnants in the Galactic supernova remnant catalog.
Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.; Sinnis, G.; Ukwatta, T. N.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM USA, Email: hfleisch@mtu.edu;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000599109900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4639
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Salesa, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Monte Carlo simulations for the ANTARES underwater neutrino telescope Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 064 - 20pp
Keywords cosmic ray experiments; neutrino astronomy; neutrino detectors; neutrino experiments
Abstract Monte Carlo simulations are a unique tool to check the response of a detector and to monitor its performance. For a deep-sea neutrino telescope, the variability of the environmental conditions that can affect the behaviour of the data acquisition system must be considered, in addition to a reliable description of the active parts of the detector and of the features of physics events, in order to produce a realistic set of simulated events. In this paper, the software tools used to produce neutrino and cosmic ray signatures in the telescope and the strategy developed to represent the time evolution of the natural environment and of the detector efficiency are described.
Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: annarita.margiotta@unibo.it
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000620675000064 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4743
Permanent link to this record
 

 
Author Jueid, A.; Kip, J.; Ruiz de Austri, R.; Skands, P.
Title Impact of QCD uncertainties on antiproton spectra from dark-matter annihilation Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 068 - 15pp
Keywords cosmic ray theory; dark matter simulations; cosmic ray experiments; Frequentist statistics
Abstract Dark-matter particles that annihilate or decay can undergo complex sequences of processes, including strong and electromagnetic radiation, hadronisation, and hadron de-cays, before particles that are stable on astrophysical time scales are produced. Antiprotons produced in this way may leave footprints in experiments such as AMS-02. Several groups have reported an excess of events in the antiproton flux in the rigidity range of 10-20 GV. However, the theoretical modeling of baryon production is not straightforward and relies in part on phenomenological models in Monte Carlo event generators. In this work, we assess the impact of QCD uncertainties on the spectra of antiprotons from dark-matter annihila-tion. As a proof-of-principle, we show that for a two-parameter model that depends only on the thermally-averaged annihilation cross section ((o -v)) and the dark-matter mass (Mx), QCD uncertainties can affect the best-fit mass by up to ti 14% (with large uncertainties for large DM masses), depending on the choice of Mx and the annihilation channel (bb over bar or W+W-), and (o -v) by up to ti 10%. For comparison, changes to the underlying diffusion parameters are found to be within 1%-5%, and the results are also quite resilient to the choice of cosmic-ray propagation model. These findings indicate that QCD uncertainties need to be included in future DM analyses. To facilitate full-fledged analyses, we provide the spectra in tabulated form including QCD uncertainties and code snippets to perform mass interpolations and quick DM fits. The code can be found in this GitHub [1] repository.
Address [Jueid, Adil] Inst Basic Sci IBS, Ctr Theoret Phys Universe, Daejeon 34126, South Korea, Email: adiljueid@ibs.re.kr;
Corporate Author Thesis
Publisher (down) IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000985779900007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5532
Permanent link to this record