|   | 
Details
   web
Records
Author Tarifeño-Saldivia, A.; Soto, L.
Title Effects of gas chamber geometry and gas flow on the neutron production in a fast plasma focus neutron source Type Journal Article
Year 2014 Publication Plasma Physics and Controlled Fusion Abbreviated Journal Plasma Phys. Control. Fusion
Volume 56 Issue 12 Pages 125013 - 5pp
Keywords pulsed neutron source; repetitive plasma focus; neutron yield measurement; fast plasma focus
Abstract This work reports that gas chamber geometry and gas flow management substantially affect the neutron production of a repetitive fast plasma focus. The gas flow rate is the most sensitive parameter. An appropriate design of the gas chamber combined with a suitable flow-rate management can lead to improvements in the neutron production of one order of magnitude working in a fast repetitive mode.
Address [Tarifeno-Saldivia, Ariel; Soto, Leopoldo] Comis Chilena Energia Nucl CCHEN, Santiago, Chile, Email: atarisal@gmail.com;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0741-3335 ISBN Medium
Area Expedition Conference
Notes WOS:000346926300024 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2070
Permanent link to this record
 

 
Author NEXT Collaboration (Gomez-Cadenas, J.J. et al); Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Present Status and Future Perspectives of the NEXT Experiment Type Journal Article
Year 2014 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.
Volume 2014 Issue Pages 907067 - 22pp
Keywords
Abstract NEXT is an experiment dedicated to neutrinoless double beta decay searches in xenon. The detector is a TPC, holding 100 kg of high-pressure xenon enriched in the Xe-136 isotope. It is under construction in the Laboratorio Subterraneo de Canfranc in Spain, and it will begin operations in 2015. The NEXT detector concept provides an energy resolutionbetter than 1% FWHM and a topological signal that can be used to reduce the background. Furthermore, the NEXT technology can be extrapolated to a 1 ton-scale experiment.
Address [Gomez Cadenas, J. J.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: paola.ferrario@ific.uv.es
Corporate Author Thesis
Publisher (down) Hindawi Publishing Corporation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1687-7357 ISBN Medium
Area Expedition Conference
Notes WOS:000333620700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1745
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.
Title Amplifying the Hawking Signal in BECs Type Journal Article
Year 2014 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.
Volume 2014 Issue Pages 713574 - 8pp
Keywords
Abstract We consider simple models of Bosep-Einstein condensates to study analog pairp-creation effects, namely, the Hawking effect from acoustic black holes and the dynamical Casimir effect in rapidly timep-dependent backgrounds. We also focus on a proposal by Cornell to amplify the Hawking signal in density-density correlators by reducing the atoms' interactions shortly before measurements are made.
Address [Balbinot, Roberto; Fabbri, Alessandro] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy, Email: afabbri@ific.uv.es
Corporate Author Thesis
Publisher (down) Hindawi Publishing Corporation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1687-7357 ISBN Medium
Area Expedition Conference
Notes WOS:000335740300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1787
Permanent link to this record
 

 
Author Boucenna, M.S.; Morisi, S.; Valle, J.W.F.
Title The Low-Scale Approach to Neutrino Masses Type Journal Article
Year 2014 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.
Volume 2014 Issue Pages 831598 - 15pp
Keywords
Abstract In this short review we revisit the broad landscape of low-scale SU(3)(C) circle times SU(2)(L) circle times U(1)(Y) models of neutrino mass generation, with view on their phenomenological potential. This includes signatures associated to direct neutrino mass messenger production at the LHC, as well as messenger-induced lepton flavor violation processes. We also briefly comment on the presence of WIMP cold dark matter candidates.
Address [Boucenna, Sofiane M.; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular Parque Cient IFIC, AHEP Grp, Valencia 46980, Spain, Email: stefano.morisi@gmail.com
Corporate Author Thesis
Publisher (down) Hindawi Publishing Corporation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1687-7357 ISBN Medium
Area Expedition Conference
Notes WOS:000340751800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1897
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Aab, A. et al); Pastor, S.
Title Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America Type Journal Article
Year 2014 Publication Atmospheric Research Abbreviated Journal Atmos. Res.
Volume 149 Issue Pages 120-135
Keywords Cosmic ray; Aerosol; Air masses; Atmospheric effect; HYSPLIT; GDAS
Abstract The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth tau(a)(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low – annual mean tau(a)(3.5 km) similar to 0.04 – and shows a seasonal trend with a winter minimum – tau(a)(3.5 km) – 0.03 -, and a summer maximum – tau(a)(3.5 km) similar to 0.06 -, and an unexpected increase from August to September tau(a)(35 km) similar to 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.
Address [Pierre Auger Collaborat] Observ Pierre Auger, RA-5613 Malargue, Argentina
Corporate Author Thesis
Publisher (down) Elsevier Science Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-8095 ISBN Medium
Area Expedition Conference
Notes WOS:000341468100011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1916
Permanent link to this record