|   | 
Details
   web
Records
Author Oliveira, C.A.B.; Sorel, M.; Martin-Albo, J.; Gomez-Cadenas, J.J.; Ferreira, A.L.; Veloso, J.F.C.A.
Title Energy resolution studies for NEXT Type Journal Article
Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 6 Issue Pages P05007 - 13pp
Keywords Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission etc); Large detector systems for particle and astroparticle physics; Time projection chambers
Abstract This work aims to present the current state of simulations of electroluminescence (EL) produced in gas-based detectors with special interest for NEXT – Neutrino Experiment with a Xenon TPC. NEXT is a neutrinoless double beta decay experiment, thus needs outstanding energy resolution which can be achieved by using electroluminescence. The process of light production is reviewed and properties such as EL yield and associated fluctuations, excitation and electroluminescence efficiencies, and energy resolution, are calculated. An EL production region with a 5 mm width gap between two infinite parallel planes is considered, where a uniform electric field is produced. The pressure and temperature considered are 10 bar and 293 K, respectively. The results show that, even for low values of VUV photon detection efficiency, good energy resolution can be achieved: below 0.4% (FWHM) at Q(beta beta) = 2.458 MeV.
Address [Oliveira, CAB; Ferreira, AL; Veloso, JFCA] Univ Aveiro, Dept Phys, i3N, P-3810193 Aveiro, Portugal, Email: carlos.oliveira@ua.pt
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000294491900008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 747
Permanent link to this record
 

 
Author de Putter, R.; Wagner, C.; Mena, O.; Verde, L.; Percival, W.J.
Title Thinking outside the box: effects of modes larger than the survey on matter power spectrum covariance Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 019 - 31pp
Keywords galaxy clustering; power spectrum; cosmological simulations; dark matter simulations
Abstract Accurate power spectrum (or correlation function) covariance matrices are a crucial requirement for cosmological parameter estimation from large scale structure surveys. In order to minimize reliance on computationally expensive mock catalogs, it is important to have a solid analytic understanding of the different components that make up a covariance matrix. Considering the matter power spectrum covariance matrix, it has recently been found that there is a potentially dominant effect on mildly non-linear scales due to power in modes of size equal to and larger than the survey volume. This beat coupling effect has been derived analytically in perturbation theory and while it has been tested with simulations, some questions remain unanswered. Moreover, there is an additional effect of these large modes, which has so far not been included in analytic studies, namely the effect on the estimated average density which enters the power spectrum estimate. In this article, we work out analytic, perturbation theory based expressions including both the beat coupling and this local average effect and we show that while, when isolated, beat coupling indeed causes large excess covariance in agreement with the literature, in a realistic scenario this is compensated almost entirely by the local average effect, leaving only similar to 10% of the excess. We test our analytic expressions by comparison to a suite of large N-body simulations, using both full simulation boxes and subboxes thereof to study cases without beat coupling, with beat coupling and with both beat coupling and the local average effect. For the variances, we find excellent agreement with the analytic expressions for k < 0.2 hMpc(-1) at z = 0.5, while the correlation coefficients agree to beyond k = 0.4 hMpc(-1). As expected, the range of agreement increases towards higher redshift and decreases slightly towards z = 0. We finish by including the large-mode effects in a full covariance matrix description for arbitrary survey geometry and confirming its validity using simulations. This may be useful as a stepping stone towards building an actual galaxy (or other tracer's) power spectrum covariance matrix.
Address [de Putter, Roland; Wagner, Christian; Verde, Lica] Univ Barcelona IEEC UB, ICC, Barcelona 08028, Spain, Email: rdeputter@berkeley.edu;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000303665000019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1016
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estañ, M.T.; Ros, E.; Salt, J.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.
Title A study of the material in the ATLAS inner detector using secondary hadronic interactions Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages P01013 - 40pp
Keywords Detector modelling and simulations I (interaction of radiation with matter, interaction; of photons with matter, interaction of hadrons with matter, etc); Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors; Large detector systems for particle and astroparticle physics
Abstract The ATLAS inner detector is used to reconstruct secondary vertices due to hadronic interactions of primary collision products, so probing the location and amount of material in the inner region of ATLAS. Data collected in 7 TeV pp collisions at the LHC, with a minimum bias trigger, are used for comparisons with simulated events. The reconstructed secondary vertices have spatial resolutions ranging from similar to 200 μm to 1 mm. The overall material description in the simulation is validated to within an experimental uncertainty of about 7%. This will lead to a better understanding of the reconstruction of various objects such as tracks, leptons, jets, and missing transverse momentum.
Address [Aad, G.; Ahles, F.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000303806200127 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1040
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Aguilar, J.A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Real, D.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title The positioning system of the ANTARES Neutrino Telescope Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages T08002 - 20pp
Keywords Timing detectors; Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc); Detector alignment and calibration methods (lasers, sources, particle-beams); Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases)
Abstract The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.
Address [Anton, G.; Eberl, T.; Enzenhoefer, A.; Folger, F.; Fritsch, U.; Graf, K.; Herold, B.; Hoessl, J.; Kalekin, O.; Kappes, A.; Katz, U.; Kopper, C.; Lahmann, R.; Meli, A.; Motz, H.; Neff, M.; Richardt, C.; Richter, R.; Roensch, K.; Schoeck, F.; Seitz, T.; Shanidze, R.; Spies, A.; Wagner, S.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany, Email: juergen.hoessl@physik.uni-erlangen.de
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000308869800043 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1176
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P07004 - 72pp
Keywords Pattern recognition, cluster finding, calibration and fitting methods; Performance of High Energy Physics Detectors; Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics); Analysis and statistical methods
Abstract This paper presents a summary of beam-induced backgrounds observed in the ATLAS detector and discusses methods to tag and remove background contaminated events in data. Trigger-rate based monitoring of beam-related backgrounds is presented. The correlations of backgrounds with machine conditions, such as residual pressure in the beam-pipe, are discussed. Results from dedicated beam-background simulations are shown, and their qualitative agreement with data is evaluated. Data taken during the passage of unpaired, i.e. non-colliding, proton bunches is used to obtain background-enriched data samples. These are used to identify characteristic features of beam-induced backgrounds, which then are exploited to develop dedicated background tagging tools. These tools, based on observables in the Pixel detector, the muon spectrometer and the calorimeters, are described in detail and their efficiencies are evaluated. Finally an example of an application of these techniques to a monojet analysis is given, which demonstrates the importance of such event cleaning techniques for some new physics searches.
Address [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000322572900015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1557
Permanent link to this record
 

 
Author Resta-Lopez, J.
Title Nonlinear protection of beam delivery systems for multi-TeV linear colliders Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P11010 - 19pp
Keywords Beam Optics; Beam dynamics; Accelerator Subsystems and Technologies; Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics)
Abstract The post-linac energy collimation system of future e(+)e(-) multi-TeV linear colliders is designed to fulfil an essential function of protection of the Beam Delivery System (BDS) against miss-steered or errant beams likely generated by failure modes in the main linac. For the case of the Compact Linear Collider (CLIC), the energy collimators are required to withstand the impact of a full bunch train in case of failure. This condition makes the design of the energy collimation system especially challenging, if we take into account the need to dispose of an unprecedented transverse beam energy density per beam of the order of GJ/mm(2), when assuming the nominal CLIC beam parameters at 3 TeV centre-of-mass energy, which translates into an extremely high damage potential of uncontrolled beams. This leads to research activities involving new collimator materials and novel collimation techniques. The increase of the transverse spot size at the collimators using nonlinear magnets is a potential solution to guarantee the survival of the collimators. In this paper we present an alternative nonlinear optics based on a multipole magnet pair for energy collimation. In order to preserve an acceptable luminosity performance, we carefully study the general conditions for self-cancellation of optical aberrations between two multipoles. This nonlinear optics scheme is adapted to the requirements of the post-linac energy collimation system for the CLIC BDS, and its performance is investigated by means of beam tracking simulations. Although applied to the CLIC case, this nonlinear protection system could be adapted to other future colliders.
Address Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, Valencia 46071, Spain, Email: resta@ific.uv.es
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000329193500035 Approved no
Is ISI yes International Collaboration
Call Number IFIC @ pastor @ Serial 1697
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Bernabeu Verdu, J.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia-Argos, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title Operation and performance of the ATLAS semiconductor tracker Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages P08009 - 73pp
Keywords Solid state detectors; Charge transport and multiplication in solid media; Particle tracking detectors (Solid-state detectors); Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)
Abstract The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations.
Address [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000341927600037 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1945
Permanent link to this record
 

 
Author Bernal, N.; Forero-Romero, J.E.; Garani, R.; Palomares-Ruiz, S.
Title Systematic uncertainties from halo asphericity in dark matter searches Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 004 - 30pp
Keywords dark matter theory; dark matter simulations
Abstract Although commonly assumed to be spherical, dark matter halos are predicted to be non-spherical by N-body simulations and their asphericity has a potential impact on the systematic uncertainties in dark matter searches. The evaluation of these uncertainties is the main aim of this work, where we study the impact of aspherical dark matter density distributions in Milky-Way-like halos on direct and indirect searches. Using data from the large N-body cosmological simulation Bolshoi, we perform a statistical analysis and quantify the systematic uncertainties on the determination of local dark matter density and the so-called J factors for dark matter annihilations and decays from the galactic center. We find that, due to our ignorance about the extent of the non-sphericity of the Milky Way dark matter halo, systematic uncertainties can be as large as 35%, within the 95% most probable region, for a spherically averaged value for the local density of 0.3-0.4 GeV/cm(3). Similarly, systematic uncertainties on the J factors evaluated around the galactic center can be as large as 10% and 15%, within the 95% most probable region, for dark matter annihilations and decays, respectively.
Address [Bernal, Nicolas] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01405 Sao Paulo, Brazil, Email: nicolas@ift.unesp.br;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000342642500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1958
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A.
Title Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages P11006 - 20pp
Keywords Cherenkov detectors; Cherenkov and transition radiation; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Dark Matter detectors (WIMPs, axions, etc.)
Abstract XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2.10(47) cm(2) for WIMP masses around 50 GeV/c(2), which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of similar to 10m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (> 99.5%) and showers of secondary particles from muon interactions in the rock (> 70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.
Address [Aprile, E.; Contreras, H.; Goetzke, L. W.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: dr.serena.fattori@gmail.com
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000345026000020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2061
Permanent link to this record
 

 
Author Doncel, M.; Cederwall, B.; Martin, S.; Quintana, B.; Gadea, A.; Farnea, E.; Algora, A.
Title Conceptual design of a high resolution Ge array with tracking and imaging capabilities for the DESPEC (FAIR) experiment Type Journal Article
Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 10 Issue Pages P06010 - 15pp
Keywords Gamma detectors (scintillators, CZT, HPG, HgI etc); Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)
Abstract We present results of Monte Carlo simulations for the conceptual design of the high-resolution DESPEC Germanium Array Spectrometer (DEGAS) proposed for the Facility for Ion and Antiproton Research (FAIR) under construction at Darmstadt, Germany. The project is carried out in three phases, although only results for the two first phases will be addressed in this work. The first phase will consist of a re-arrangement of the EUROBALL cluster detectors previously used in the RISING campaign at GSI. The second phase is based on coupling AGATA-type triple-cluster detectors with EUROBALL cluster detectors in a compact geometry around the active ion implantation target of DESPEC.
Address [Doncel, M.; Cederwall, B.] Royal Inst Technol, Dept Phys, S-10691 Stockholm, Sweden, Email: doncel@kth.se
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000358004200026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2316
Permanent link to this record