toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Araujo Filho, A.A.; Zare, S.; Porffrio, P.J.; Kriz, J.; Hassanabadi, H. url  doi
openurl 
  Title Thermodynamics and evaporation of a modified Schwarzschild black hole in a non-commutative gauge theory Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 838 Issue Pages 137744 - 9pp  
  Keywords Thermodynamic properties; Black hole; Non-commutative gauge theory; Evaporation process  
  Abstract In this work, we study the thermodynamic properties on a non-commutative background via gravitational gauge field potentials. This procedure is accomplished after contracting de Sitter (dS) group, SO(4, 1), with the Poincare group, ISO(3, 1). Particularly, we focus on a static spherically symmetric black hole. In this manner, we calculate the modified Hawking temperature and the other deformed thermal state quantities, namely, entropy, heat capacity, Helmholtz free energy and pressure. Finally, we also investigate the black hole evaporation process in such a context.  
  Address [Araujo Filho, A. A.] Univ Valencia, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000935398000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5483  
Permanent link to this record
 

 
Author Pinto-Gomez, F.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Rodriguez-Quintero, J. url  doi
openurl 
  Title Lattice three-gluon vertex in extended kinematics: Planar degeneracy Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 838 Issue Pages 137737 - 8pp  
  Keywords QCD; Three-gluon vertex; Lattice QCD; Schwinger-Dyson equations  
  Abstract We present novel results for the three-gluon vertex, obtained from an extensive quenched lattice simulation in the Landau gauge. The simulation evaluates the transversely projected vertex, spanned on a special tensorial basis, whose form factors are naturally parametrized in terms of individually Bosesymmetric variables. Quite interestingly, when evaluated in these kinematics, the corresponding form factors depend almost exclusively on a single kinematic variable, formed by the sum of the squares of the three incoming four-momenta, q, r, and p. Thus, all configurations lying on a given plane in the coordinate system (q2, r2, p2) share, to a high degree of accuracy, the same form factors, a property that we denominate planar degeneracy. We have confirmed the validity of this property through an exhaustive study of the set of configurations satisfying the condition q2 = r2, within the range [0, 5 GeV]. This drastic simplification allows for a remarkably compact description of the main bulk of the data, which is particularly suitable for future numerical applications. A semi-perturbative analysis reproduces the lattice findings rather accurately, once the inclusion of a gluon mass has cured all spurious divergences.  
  Address [Pinto-Gomez, F.; De Soto, F.] Univ Pablo de Olavide, Dpto Sistemas Fis Quim & Nat, Seville 41013, Spain, Email: jose.rodriguez@dfaie.uhu.es  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000953425400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5503  
Permanent link to this record
 

 
Author Martin Lozano, V.; Sanda Seoane, R.M.; Zurita, J. url  doi
openurl 
  Title Z'-explorer 2.0: Reconnoitering the dark matter landscape Type Journal Article
  Year 2023 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 288 Issue Pages 108729 - 14pp  
  Keywords LHC; New physics; Exclusion limits; Dark matter  
  Abstract We introduce version 2.0 of Z'-explorer, a software tool that provides a simple, fast, and user-friendly test of models with an extra U (1) gauge boson (Z') against experimental LHC results. The main novelty of the second version is the inclusion of missing energy searches, as the first version only included final states into SM particles. Hence Z'-explorer 2.0 is able to test dark matter models where the Z' acts as an s-channel mediator between the Standard Model and the dark sector, a widespread benchmark employed by the ATLAS and CMS experimental collaborations. To this end, we perform here the first public reinterpretation of the most recent ATLAS mono-jet search with 139 fb-1. In addition, the corresponding searches in the visible final states have also been updated. We illustrate the power of our code by re -obtaining public plots and also showing novel results. In particular, we study the cases where the Z' couples strongly to top quarks (top-philic), where dark matter couples with a mixture of vector and axial-vector couplings, and also perform a scan in the parameter space of a string inspired Stuckelberg model. Z'-explorer 2.0 is publicly available on GitHub. Program summary Program Title: Z'-explorer 2.0 CPC Library link to program files: https://doi .org /10 .17632 /k7tdp8kwgf .2 Developer's repository link: https://github .com /ro -sanda /Z--explorer-2 .0 Licensing provisions: GPLv3 Programming language: C++ and bash Nature of problem: New SM neutral gauge bosons, Z', are ubiquitously present in models of New Physics. In order to confront these models versus a large and ever-growing library of LHC searches, Z'-explorer 1.0 had already included all final states including Standard Model particles. Notably, the previous version of this tool lacked the so-called invisible final states manifested as a momentum imbalance in the transverse plane (“missing energy”). These searches help to probe mediators into a dark sector, where a dark matter candidate resides. Solution method: Z'-explorer encodes the production cross sections for Z' bosons at the LHC as a function of their mass, allowing for a fast evaluation of the exclusion limits. This version of Z'-explorer includes a careful validation of the latest search with one energetic jet (mono-jet) performed by the ATLAS collaboration. Hence one can now test if a given point in parameter space is excluded by both visible and invisible searches. The modular structure of the code has been kept, which allows for potential additions (low-energy constraints, flavor, extrapolation to future colliders).  
  Address [Lozano, Victor Martin] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: victor.lozano@desy.de;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000969171700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5515  
Permanent link to this record
 

 
Author Ji, T.; Dong, X.K.; Albaladejo, M.; Du, M.L.; Guo, F.K.; Nieves, J.; Zou, B.S. url  doi
openurl 
  Title Understanding the 0(++) and 2(++) charmonium(-like) states near 3.9 GeV Type Journal Article
  Year 2023 Publication Science Bulletin Abbreviated Journal Sci. Bull.  
  Volume 68 Issue 7 Pages 688-697  
  Keywords Charmonium(-like) states; Hadronic molecules; Heavy quark spin symmetry; Exotic hadrons; Hadron-hadron interactions  
  Abstract We propose that the X(3915) observed in the J/psi x channel is the same state as the chi(c2)(3930), and the X(3960), observed in the Ds+Ds- channel, is an S-wave Ds+Ds- hadronic molecule. In addition, the J(PC) = 0(++) component in the B+ -> D+D-K+ assigned to the X(3915) in the current Review of Particle Physics has the same origin as the X(3960), which has a mass around 3.94 GeV. To check the proposal, the available data in the D (D) over bar and Ds+Ds- channels from both B decays and gamma gamma fusion reaction are analyzed considering both the D (D) over bar -D-s(D) over bar (s)-D*(D) over bar*-D-s*(D) over bar (s)* coupled channels with 0(++) and a 2(++) state introduced additionally. It is found that all the data in different processes can be simultaneously well reproduced, and the coupled-channel dynamics produce four hidden-charm scalar molecular states with masses around 3.73, 3.94, 3.99 and 4.23 GeV, respectively. The results may deepen our understanding of the spectrum of charmonia as well as of the interactions between charmed hadrons.  
  Address [Ji, Teng; Dong, Xiang-Kun; Guo, Feng-Kun; Zou, Bing-Song] Inst Theoret Phys, Chinese Acad Sci, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China, Email: jiteng@itp.ac.cn;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-9273 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000985290600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5520  
Permanent link to this record
 

 
Author Aguilar, A.C.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Pinto-Gomez, F.; Roberts, C.D.; Rodriguez-Quintero, J. url  doi
openurl 
  Title Schwinger mechanism for gluons from lattice QCD Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 841 Issue Pages 137906 - 8pp  
  Keywords Continuum Schwinger function methods; Emergence of mass; Gluons; Lattice Schwinger function methods; Quantum chromodynamics; Schwinger mechanism of gauge boson mass; generation  
  Abstract Continuum and lattice analyses have revealed the existence of a mass-scale in the gluon two-point Schwinger function. It has long been conjectured that this expresses the action of a Schwinger mechanism for gauge boson mass generation in quantum chromodynamics (QCD). For such to be true, it is necessary and sufficient that a dynamically-generated, massless, colour-carrying, scalar gluon+gluon correlation emerges as a feature of the dressed three-gluon vertex. Working with results on elementary Schwinger functions obtained via the numerical simulation of lattice-regularised QCD, we establish with an extremely high level of confidence that just such a feature appears; hence, confirm the conjectured origin of the gluon mass scale.  
  Address [Aguilar, A. C.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, UNICAMP, BR-13083859 Campinas, SP, Brazil, Email: cristina.aguilar@unicamp.br;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000984221700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5530  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva