Albertus, C., Hernandez, E., & Nieves, J. (2010). Hyperfine mixing in electromagnetic decay of doubly heavy bc baryons. Phys. Lett. B, 690(3), 265–271.
Abstract: We investigate the role of hyperfine mixing in the electromagnetic decay of ground state doubly heavy bc baryons. As in the case of a previous calculation on b -> c semileptonic decays of doubly heavy baryons, we find large corrections to the electromagnetic decay widths due to this mixing. Contrary to the weak case just mentioned, we find here that one cannot use electromagnetic width relations obtained in the infinite heavy quark mass limit to experimentally extract information on the admixtures in a model independent way.
|
Albertus, C., Hernandez, E., & Nieves, J. (2010). Hyperfine mixing in b -> c semileptonic decay of doubly heavy baryons. Phys. Lett. B, 683(1), 21–25.
Abstract: We qualitatively corroborate the results of [W. Roberts, M. Pervin, Int. J. Mod. Phys. A 24 (2009) 2401] according to which hyperfine mixing greatly affects the decay widths of b -> c semileptonic decays involving doubly heavy bc baryons. However, our predictions for the decay widths of the unmixed states differ from those reported in the work of Roberts and Pervin by a factor of 2, and this discrepancy translates to the mixed case. We further show that the predictions of heavy quark spin symmetry, might be used in the future to experimentally extract information on the admixtures in the actual physical bc baryons, in a model independent manner.
|
Albertus, C., Hernandez, E., & Nieves, J. (2011). Exclusive c -> s, d semileptonic decays of ground-state spin-1/2 doubly charmed baryons. Phys. Lett. B, 704(5), 499–509.
Abstract: We evaluate exclusive semileptonic decays of ground-state spin-1/2 doubly heavy charmed baryons driven by a c -> s, d transition at the quark level. Our results for the form factors are consistent with heavy quark spin symmetry constraints which are valid in the limit of an infinitely massive charm quark and near zero recoil. Only a few exclusive semileptonic decay channels have been theoretically analyzed before. For those cases we find that our results are in a reasonable agreement with previous calculations.
|
Nieves, J., Ruiz Simo, I., & Vicente Vacas, M. J. (2012). The nucleon axial mass and the MiniBooNE quasielastic neutrino-nucleus scattering problem. Phys. Lett. B, 707(1), 72–75.
Abstract: The charged-current double differential neutrino cross section, measured by the MiniBooNE Collaboration, has been analyzed using a microscopical model that accounts for, among other nuclear effects, long range nuclear (RPA) correlations and multinucleon scattering. We find that MiniBooNE data are fully compatible with the world average of the nucleon axial mass in contrast with several previous analyses which have suggested an anomalously large value. We also discuss the reliability of the algorithm used to estimate the neutrino energy.
|
Nieves, J., Ruiz Simo, I., & Vicente Vacas, M. J. (2013). Two particle-hole excitations in charged current quasielastic antineutrino-nucleus scattering. Phys. Lett. B, 721(1-3), 90–93.
Abstract: We evaluate the quasielastic and multinucleon contributions to the antineutrino-nucleus scattering cross section and compare our results with the recent MiniBooNE data. We use a local Fermi gas model that includes RPA correlations and gets the multinucleon part from a systematic many body expansion of the W boson selfenergy in the nuclear medium. The same model had been quite successful for the neutrino cross section and contains no new parameters. We have also analyzed the relevance of 2p2h events for the antineutrino energy reconstruction.
|