toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arbelaez, C.; Carcamo Hernandez, A.E.; Cepedello, R.; Hirsch, M.; Kovalenko, S. url  doi
openurl 
  Title Radiative type-I seesaw neutrino masses Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 11 Pages 115021 - 7pp  
  Keywords  
  Abstract We discuss a radiative type-I seesaw. In these models, the radiative generation of Dirac neutrino masses allows to explain the smallness of the observed neutrino mass scale for rather light right-handed neutrino masses in a type-1 seesaw. We first present the general idea in a model-independent way. This allows us to estimate the typical scale of right-handed neutrino mass as a function of the number of loops. We then present two example models, at the one- and two-loop level, which we use to discuss neutrino masses and lepton-flavor-violating constraints in more detail. For the two-loop example, right-handed neutrino masses must lie below 100 GeV, thus making this class of models testable in heavy neutral lepton searches.  
  Address [Arbelaez, Carolina; Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Dept Phys, Ave Espana 1680, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher (down) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000501488800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4221  
Permanent link to this record
 

 
Author Hirsch, M.; Wang, Z.S. url  doi
openurl 
  Title Heavy neutral leptons at ANUBIS Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 5 Pages 055034 - 9pp  
  Keywords  
  Abstract Recently Bauer et al. [arXiv:1909.13022] proposed ANUBIS, an auxiliary detector to be installed in one of the shafts above the ATLAS or CMS interaction point, as a tool to search for long-lived particles. Here, we study the sensitivity of this proposal for long-lived heavy neutral leptons (HNLs) in both minimal and extended scenarios. We start with the minimal HNL model where both production and decay of the HNLs are mediated by active-sterile neutrino mixing, before studying the case of right-handed neutrinos in a leftright symmetric model. We then consider a U(1)(B-L) extension of the Standard Model (SM). In this model HNLs are produced from the decays of the mostly SM-like Higgs boson, via mixing in the scalar sector of the theory. In all cases, we fmd that ANUBIS has sensitivity reach comparable to the proposed MATHUSLA detector. For the minimal HNL scenario, the contributions from W's decaying to HNLs are more important at ANUBIS than at MATHUSLA, extending the sensitivity to slightly larger HNL masses at ANUBIS.  
  Address [Hirsch, Martin] Univ Valencia Calle, Inst Fis Corpuscular, CSIC, AHEP Grp, Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: mahirsch@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (down) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000522163200007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4358  
Permanent link to this record
 

 
Author Cordero-Carrion, I.; Hirsch, M.; Vicente, A. url  doi
openurl 
  Title General parametrization of Majorana neutrino mass models Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 7 Pages 075032 - 25pp  
  Keywords  
  Abstract We discuss a general formula which allows to automatically reproduce experimental data for Majorana neutrino mass models, while keeping the complete set of the remaining model parameters free for general scans, as necessary in order to provide reliable predictions for observables outside the neutrino sector. We provide a proof of this master parametrization and show how to apply it for several well-known neutrino mass models from the literature. We also discuss a list of special cases, in which the Yukawa couplings have to fulfill some particular additional conditions.  
  Address [Cordero-Carrion, I] Univ Valencia, Dept Matemat, E-46100 Valencia, Spain, Email: isabel.cordero@uv.es;  
  Corporate Author Thesis  
  Publisher (down) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000527506300005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4377  
Permanent link to this record
 

 
Author Arbelaez, C.; Cottin, G.; Helo, J.C.; Hirsch, M. url  doi
openurl 
  Title Long-lived charged particles and multilepton signatures from neutrino mass models Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 9 Pages 095033 - 13pp  
  Keywords  
  Abstract Lepton number violation (LNV) is usually searched for by the LHC collaborations using the same-sign dilepton plus jet signature. In this paper, we discuss multilepton signals of LNV that can arise with experimentally interesting rates in certain loop models of neutrino mass generation. Interestingly, in such models, the observed smallness of the active neutrino masses, together with the high multiplicity of the final states, leads in large parts of the viable parameter space of such models to the prediction of long-lived charged particles, which leave highly ionizing tracks in the detectors. We focus on one particular one-loop neutrino mass model in this class and discuss its LHC phenomenology in some detail.  
  Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Av Espana 1680,Casilla 110-5, Valparaiso 2340000, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher (down) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000535451000011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4403  
Permanent link to this record
 

 
Author Arbelaez, C.; Cepedello, R.; Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title (g-2) anomalies and neutrino mass Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 7 Pages 075005 - 14pp  
  Keywords  
  Abstract Motivated by the experimentally observed deviations from standard model predictions, we calculate the anomalous magnetic moments a(alpha) = (g – 2)(alpha) for a = e, μin a neutrino mass model originally proposed by Babu, Nandi, and Tavartkiladze (BNT). We discuss two variants of the model: the original model, and a minimally extended version with an additional hypercharge-zero triplet scalar. While the original BNT model can explain a(mu), only the variant with the triplet scalar can explain both experimental anomalies. The heavy fermions of the model can be produced at the high-luminosity LHC, and in the part of parameter space where the model explains the experimental anomalies it predicts certain specific decay patterns for the exotic fermions.  
  Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher (down) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000576053400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4557  
Permanent link to this record
 

 
Author Alvarez, A.; Cepedello, R.; Hirsch, M.; Porod, W. url  doi
openurl 
  Title Temperature effects on the Z(2) symmetry breaking in the scotogenic model Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 3 Pages 035013 - 8pp  
  Keywords  
  Abstract It is well known that the scotogenic model for neutrino mass generation can explain correctly the relic abundance of cold dark matter. There have been claims in the literature that an important part of the parameter space of the simplest scotogentic model can be constrained by the requirement that no Z(2)-breaking must occur in the early universe. Here we show that this requirement does not give any constraints on the underlying parameter space at least in those parts, where we can trust perturbation theory. To demonstrate this, we have taken into account the proper decoupling of heavy degrees of freedom in both the thermal potential and in the RGE evolution.  
  Address [Alvarez, Alexandre; Cepedello, Ricardo; Porod, Werner] Univ Wurzburg, Inst Theoret Phys & Astrophys, Campus Hubland Nord, D-97074 Wurzburg, Germany, Email: alexandre.alvarez@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher (down) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000761164000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5152  
Permanent link to this record
 

 
Author Arbelaez, C.; Hirsch, M.; Reichert, L. url  doi
openurl 
  Title Supersymmetric mass spectra and the seesaw type-I scale Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 112  
  Keywords  
  Abstract We calculate supersymmetric mass spectra with cMSSM boundary conditions and a type-I seesaw mechanism added to explain current neutrino data. Using published, estimated errors on SUSY mass observables for a combined LHC+ILC analysis, we perform a theoretical chi(2) analysis to identify parameter regions where pure cMSSM and cMSSM plus seesaw type-I might be distinguishable with LHC+ILC data. The most important observables are determined to be the (left) smuon and selectron masses and the splitting between them, respectively. Splitting in the (left) smuon and selectrons is tiny in most of cMSSM parameter space, but can be quite sizeable for large values of the seesaw scale, m S S. Thus, for very roughly m(SS) >= 10(14) GeV hints for type-I seesaw might appear in SUSY mass measurements. Since our numerical results depend sensitively on forecasted error bars, we discuss in some detail the accuracies, which need to be achieved, before a realistic analysis searching for signs of type-I seesaw in SUSY spectra can be carried out.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301453400032 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1026  
Permanent link to this record
 

 
Author Hirsch, M.; Malinsky, M.; Porod, W.; Reichert, L.; Staub, F. url  doi
openurl 
  Title Hefty MSSM-like light Higgs in extended gauge models Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 084  
  Keywords  
  Abstract It is well known that in the MSSM the lightest neutral Higgs h(0) must be, at the tree level, lighter than the Z boson and that the loop corrections shift this stringent upper bound up to about 130GeV. Extending the MSSM gauge group in a suitable way, the new Higgs sector dynamics can push the tree-level mass of h(0) well above the tree-level MSSM limit if it couples to the new gauge sector. This effect is further pronounced at the loop level and h(0) masses in the 140GeV ballpark can be reached easily. We exemplify this for a sample setting with a low-scale U(1)(R) x U(1)(B-L) gauge symmetry in which neutrino masses can be implemented via the inverse seesaw mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301453400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1027  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva