|   | 
Details
   web
Records
Author BRIKEN Collaboration (Tarifeño-Saldivia, A. et al); Tain, J.L.; Domingo-Pardo, C.; Agramunt, J.; Algora, A.; Morales, A.I.; Rubio, B.; Tolosa, A.
Title Conceptual design of a hybrid neutron-gamma detector for study of beta-delayed neutrons at the RIB facility of RIKEN Type Journal Article
Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 12 Issue Pages P04006 - 22pp
Keywords Detector modelling and simulations I (interaction of radiation with matter, interaction; of photons with matter, interaction of hadrons with matter, etc); Instrumentation for radioactive beams (fragmentation devices; fragment and isotope, separators incl. ISOL; isobar separators; ion and atom traps; weak-beam diagnostics; radioactive-beam ion sources); Neutron detectors (cold, thermal, fast neutrons)
Abstract BRIKEN is a complex detection system to be installed at the RIB-facility of the RIKEN Nishina Center. It is aimed at the detection of heavy-ion implants, β-particles, γ-rays and β-delayed neutrons. The whole detection setup involves the Advanced Implantation Detection Array (AIDA), two HPGe Clover detectors and a large set of 166 counters of 3He embedded in a high-density polyethylene matrix. This article reports on a novel methodology developed for the conceptual design and optimisation of the 3He-tubes array, aiming at the best possible performance in terms of neutron detection. The algorithm is based on a geometric representation of two selected parameters of merit, namely, average neutron detection efficiency and efficiency flatness, as a function of a reduced number of geometric variables. The response of the detection system itself, for each configuration, is obtained from a systematic MC-simulation implemented realistically in Geant4. This approach has been found to be particularly useful. On the one hand, due to the different types and large number of 3He-tubes involved and, on the other hand, due to the additional constraints introduced by the ancillary detectors for charged particles and gamma-rays. Empowered by the robustness of the algorithm, we have been able to design a versatile detection system, which can be easily re-arranged into a compact mode in order to maximize the neutron detection performance, at the cost of the gamma-ray sensitivity. In summary, we have designed a system which shows, for neutron energies up to 1(5) MeV, a rather flat and high average efficiency of 68.6%(64%) and 75.7%(71%) for the hybrid and compact modes, respectively. The performance of the BRIKEN system has been also quantified realistically by means of MC-simulations made with different neutron energy distributions.
Address [Tarifeno-Saldivia, A.] UPC, Barcelona, Spain, Email: ariel.esteban.tarifeno@upc.edu
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000405067800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3209
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Performance of the ATLAS Transition Radiation Tracker in Run 1 of the LHC: tracker properties Type Journal Article
Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 12 Issue Pages P05002 - 42pp
Keywords Particle tracking detectors (Gaseous detectors); Transition radiation detectors
Abstract The tracking performance parameters of the ATLAS Transition Radiation Tracker (TRT) as part of the ATLAS inner detector are described in this paper for different data-taking conditions in proton-proton, proton-lead and lead-lead collisions at the Large Hadron Collider (LHC). The performance is studied using data collected during the first period of LHC operation (Run 1) and is compared with Monte Carlo simulations. The performance of the TRT, operating with two different gas mixtures (xenon-based and argon-based) and its dependence on the TRT occupancy is presented. These studies show that the tracking performance of the TRT is similar for the two gas mixtures and that a significant contribution to the particle momentum resolution is made by the TRT up to high particle densities.
Address [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia, Email: atlas.publications@cern.ch
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000405076000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3220
Permanent link to this record
 

 
Author Kuehn, S. et al; Bernabeu, J.; Lacasta, C.; Marco-Hernandez, R.; Santoyo, D.; Solaz, C.; Soldevila, U.
Title Prototyping of hybrids and modules for the forward silicon strip tracking detector for the ATLAS Phase-II upgrade Type Journal Article
Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 12 Issue Pages P05015 - 26pp
Keywords Si microstrip and pad detectors; Particle tracking detectors (Solid-state detectors); Solid state detectors
Abstract For the High-Luminosity upgrade of the Large Hadron Collider an increased instantaneous luminosity of up to 7.5 . 10(34) cm(-2) s(-1), leading to a total integrated luminosity of up to 3000 fb(-1), is foreseen. The current silicon and transition radiation tracking detectors of the ATLAS experiment will be unable to cope with the increased track densities and radiation levels, and will need to be replaced. The new tracking detector will consist entirely of silicon pixel and strip detectors. In this paper, results on the development and tests of prototype components for the new silicon strip detector in the forward regions (end-caps) of the ATLAS detector are presented. Flex-printed readout boards with fast readout chips, referred to as hybrids, and silicon detector modules are investigated. The modules consist of a hybrid glued onto a silicon strip sensor. The channels on both are connected via wire-bonds for readout and powering. Measurements of important performance parameters and a comparison of two possible readout schemes are presented. In addition, the assembly procedure is described and recommendations for further prototyping are derived.
Address [Kuehn, S.] CERN, European Org Nucl Res, Expt Phys, Route Meyrin 385, CH-1211 Geneva 23, Switzerland, Email: susanne.kuehn@cern.ch
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000405076000015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3221
Permanent link to this record
 

 
Author Poley, L. et al; Lacasta, C.
Title Investigations into the impact of locally modified sensor architectures on the detection efficiency of silicon micro-strip sensors Type Journal Article
Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 12 Issue Pages P07006 - 17pp
Keywords Si microstrip and pad detectors; Inspection with x-rays; Hybrid detectors; Instrumentation for particle accelerators and storage rings – high energy (linear accelerators, synchrotrons)
Abstract The High Luminosity Upgrade of the LHC will require the replacement of the Inner Detector of ATLAS with the Inner Tracker (ITk) in order to cope with higher radiation levels and higher track densities. Prototype silicon strip detector modules are currently developed and their performance is studied in both particle test beams and X-ray beams. In previous test beam measurements of prototype modules, the response of silicon sensors has been studied in detailed scans across individual sensor strips. These scans found instances of sensor strips collecting charge across areas on the sensor deviating from the geometrical width of a sensor strip. The variations have been linked to local features of the sensor architecture. This paper presents results of detailed sensor measurements in both X-ray and particle beams investigating the impact of sensor features (metal pads and p-stops) on the sensor strip response.
Address [Poley, L.] DESY, Notkestr, Hamburg, Germany, Email: Anne-Luise.Poley@desy.de
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000406392600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3234
Permanent link to this record
 

 
Author Bhattacharya, A.; Esmaili, A.; Palomares-Ruiz, S.; Sarcevic, I.
Title Probing decaying heavy dark matter with the 4-year IceCube HESE data Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 027 - 36pp
Keywords dark matter theory; neutrino astronomy; neutrino detectors; ultra high energy photons and neutrinos
Abstract After the first four years of data taking, the IceCube neutrino telescope has observed 54 high-energy starting events (HESE) with deposited energies between 20TeV and 2PeV. The background from atmospheric muons and neutrinos is expected to be of about 20 events, all below 100TeV, thus pointing towards the astrophysical origin of about 8 events per year in that data set. However, their precise origin remains unknown. Here, we perform a detailed analysis of this event sample (considering simultaneously the energy, hemisphere and topology of the events) by assuming two contributions for the signal events: an isotropic power-law flux and a flux from decaying heavy dark matter. We fit the mass and lifetime of the dark matter and the normalization and spectral index of an isotropic power-law flux, for various decay channels of dark matter. We find that a significant contribution from dark matter decay is always slightly favored, either to explain the excess below 100TeV, as in the case of decays to quarks or, as in the case of neutrino channels, to explain the three multi-PeV events. Also, we consider the possibility to interpret all the data by dark matter decays only, considering various combinations of two decay channels. We show that the decaying dark matter scenario provides a better fit to HESE data than the isotropic power-law flux.
Address [Bhattacharya, Atri] Univ Liege, Space Sci Technol & Astrophys Res STAR Inst, Bat B5a, B-4000 Liege, Belgium, Email: a.bhattacharya@ulg.ac.be;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000406420500009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3243
Permanent link to this record