toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Olivares Herrador, J.; Latina, A.; Aksoy, A.; Fuster Martinez, N.; Gimeno, B.; Esperante, D. doi  openurl
  Title Implementation of the beam-loading effect in the tracking code RF-track based on a power-diffusive model Type Journal Article
  Year 2024 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 12 Issue Pages 1348042 - 11pp  
  Keywords beam loading; LINAC; energy loss; tracking simulation; transient; high-intensity beam; CLEAR; gradient reduction  
  Abstract The need to achieve high energies in particle accelerators has led to the development of new accelerator technologies, resulting in higher beam intensities and more compact devices with stronger accelerating fields. In such scenarios, beam-loading effects occur, and intensity-dependent gradient reduction affects the accelerated beam as a consequence of its interaction with the surrounding cavity. In this study, a power-diffusive partial differential equation is derived to account for this effect. Its numerical resolution has been implemented in the tracking code RF-Track, allowing the simulation of apparatuses where transient beam loading plays an important role. Finally, measurements of this effect have been carried out in the CERN Linear Electron Accelerator for Research (CLEAR) facility at CERN, finding good agreement with the RF-Track simulations.  
  Address [Olivares Herrador, Javier; Latina, Andrea; Aksoy, Avni] CERN, Meyrin, Switzerland, Email: javier.olivares.herrador@cern.ch  
  Corporate Author Thesis  
  Publisher (up) Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001193122800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6019  
Permanent link to this record
 

 
Author Araujo Filho, A.A. url  doi
openurl 
  Title Analysis of a regular black hole in Verlinde's gravity Type Journal Article
  Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 41 Issue 1 Pages 015003 - 30pp  
  Keywords Verlinde's emergent gravity; dark matter; shadows; black hole  
  Abstract This work focuses on the examination of a regular black hole within Verlinde's emergent gravity, specifically investigating the Hayward-like (modified) solution. The study reveals the existence of three horizons under certain conditions, i.e. an event horizon and two Cauchy horizons. Our results indicate regions which phase transitions occur based on the analysis of heat capacity and Hawking temperature. To compute the latter quantity, we utilize three distinct methods: the surface gravity approach, Hawking radiation, and the application of the first law of thermodynamics. In the case of the latter approach, it is imperative to introduce a correction to ensure the preservation of the Bekenstein-Hawking area law. Geodesic trajectories and critical orbits (photon spheres) are calculated, highlighting the presence of three light rings. Additionally, we investigate the black hole shadows. Furthermore, the quasinormal modes are explored using third- and sixth-order Wentzel-Kramers-Brillouin approximations. In particular, we observe stable and unstable oscillations for certain frequencies. Finally, in order to comprehend the phenomena of time-dependent scattering in this scenario, we provide an investigation of the time-domain solution.  
  Address [Araujo Filho, A. A.] Univ Valencia, Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br  
  Corporate Author Thesis  
  Publisher (up) IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001114102700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5841  
Permanent link to this record
 

 
Author Botella, F.J.; Cornet-Gomez, F.; Miro, C.; Nebot, M. url  doi
openurl 
  Title New physics hints from τ scalar interactions and (g-2)e,μ Type Journal Article
  Year 2024 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 51 Issue 2 Pages 025001 - 20pp  
  Keywords lepton sector; extended scalar sector; new physics signals  
  Abstract We consider a flavour conserving two Higgs doublet model that consists of a type I (or X) quark sector and a generalized lepton sector where the Yukawa couplings of the charged leptons to the new scalars are not proportional to the lepton masses. The model, previously proposed to solve both muon and electron g – 2 anomalies simultaneously, is also capable to accommodate the ATLAS excess in pp -> S -> tau(+)tau(-) with gluon-gluon fusion production in the invariant mass range [0.2; 0.6] TeV, including all relevant low and high energy constraints. The excess is reproduced taking into account the new contributions from the scalar H, the pseudoscalar A, or both. In particular, detailed numerical analyses favoured the solution with a significant hierarchy among the vevs of the two Higgs doublets, t(beta)similar to 10, and light neutral scalars satisfying m(A) > m(H) with sizable couplings to tau leptons. In this region of the parameter space, the muon g – 2 anomaly receives one and two-loop (Barr Zee) contributions of similar size, while the electron anomaly is explained at two loops. An analogous ATLAS excess in b-associated production and the CMS excess in ditop production are also studied. Further New Physics prospects concerning the anomalous magnetic moment of the tau lepton and the implications of the CDF M-W measurement on the final results are discussed.  
  Address [Botella, Francisco J.; Miro, Carlos; Nebot, Miguel] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Francisco.J.Botella@uv.es;  
  Corporate Author Thesis  
  Publisher (up) IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001132956900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5877  
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Hassanabadi, H.; Heidari, N.; Kriz, J.; Zare, S. url  doi
openurl 
  Title Gravitational traces of bumblebee gravity in metric-affine formalism Type Journal Article
  Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 41 Issue 5 Pages 055003 - 21pp  
  Keywords bumblebee gravity; metric affine formalism; shadows  
  Abstract This work explores various manifestations of bumblebee gravity within the metric-affine formalism. We investigate the impact of the Lorentz violation parameter, denoted as X, on the modification of the Hawking temperature. Our calculations reveal that as X increases, the values of the Hawking temperature attenuate. To examine the behavior of massless scalar perturbations, specifically the quasinormal modes, we employ the Wentzel-Kramers-Brillouin method. The transmission and reflection coefficients are determined through our calculations. The outcomes indicate that a stronger Lorentz-violating parameter results in slower damping oscillations of gravitational waves. To comprehend the influence of the quasinormal spectrum on time-dependent scattering phenomena, we present a detailed analysis of scalar perturbations in the time-domain solution. Additionally, we conduct an investigation on shadows, revealing that larger values of X correspond to larger shadow radii. Furthermore, we constrain the magnitude of the shadow radii using the EHT horizon-scale image of SgrA* . Finally, we calculate both the time delay and the deflection angle.  
  Address [Araujo Filho, A. A.] Univ Valencia, CSIC, Dept Fis Teor, Ctr MIxto Univ Valencia, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br  
  Corporate Author Thesis  
  Publisher (up) IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001152994800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5925  
Permanent link to this record
 

 
Author Angles-Castillo, A.; Perez, A.; Roldan, E. url  doi
openurl 
  Title Bright and dark solitons in a photonic nonlinear quantum walk: lessons from the continuum Type Journal Article
  Year 2024 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 26 Issue 2 Pages 023004 - 16pp  
  Keywords quantum walks; soliton; non-linear optics  
  Abstract We propose a nonlinear quantum walk model inspired in a photonic implementation in which the polarization state of the light field plays the role of the coin-qubit. In particular, we take profit of the nonlinear polarization rotation occurring in optical media with Kerr nonlinearity, which allows to implement a nonlinear coin operator, one that depends on the state of the coin-qubit. We consider the space-time continuum limit of the evolution equation, which takes the form of a nonlinear Dirac equation. The analysis of this continuum limit allows us to gain some insight into the existence of different solitonic structures, such as bright and dark solitons. We illustrate several properties of these solitons with numerical calculations, including the effect on them of an additional phase simulating an external electric field.  
  Address [Angles-Castillo, Andreu; Perez, Armando] Univ Valencia, Dept Fis Teor & IFIC, CSIC, Burjassot 46100, Valencia, Spain, Email: andreu.angles-castillo@uv.es  
  Corporate Author Thesis  
  Publisher (up) IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001156767400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5929  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva