toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wang, D.; Mena, O. url  doi
openurl 
  Title Robust analysis of the growth of structure Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 8 Pages 083539 - 18pp  
  Keywords  
  Abstract Current cosmological tensions show that it is crucial to test the predictions from the canonical ACDM paradigm at different cosmic times. One very appealing test of structure formation in the Universe is the growth rate of structure in our universe f, usually parametrized via the growth index gamma, with f equivalent to Omega(m)(a)gamma and gamma similar or equal to 0.55 in the standard ACDM case. Recent studies have claimed a suppression of the growth of structure from a variety of cosmological observations, characterized by gamma > 0.55. By employing different self-consistent growth parametrizations schemes, we show here that gamma < 0.55, obtaining instead an enhanced growth of structure today. This preference reaches the 3 sigma significance using cosmic microwave background observations, supernova Ia and baryon acoustic oscillation measurements. The addition of cosmic microwave background lensing data relaxes such a preference to the 2 sigma level, since a larger lensing effect can always be compensated with a smaller structure growth, or, equivalently, with gamma > 0.55. We have also included the lensing amplitude AL as a free parameter in our data analysis, showing that the preference for AL > 1 still remains, except for some particular parametrizations when lensing observations are included. We also do not find any significant preference for an oscillatory dependence of AL, AL + Am sin l. To further reassess the effects of a nonstandard growth, we have computed by means of N-body simulations the dark matter density fields, the dark matter halo mass functions and the halo density profiles for different values of gamma. Future observations from the Square Kilometer Array, reducing by a factor of 3 the current errors on the gamma parameter, further confirm or refute with a strong statistical significance the deviation of the growth index from its standard value.  
  Address [Wang, Deng; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain, Email: dengwang@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001224750700005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6130  
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S. url  doi
openurl 
  Title Interacting dark energy in the early 2020s: A promising solution to the H-0 and cosmic shear tensions Type Journal Article
  Year 2020 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 30 Issue Pages 100666 - 12pp  
  Keywords Hubble tension; Cosmological parameters; Dark matter; Dark energy; Interacting dark energy  
  Abstract We examine interactions between dark matter and dark energy in light of the latest cosmological observations, focusing on a specific model with coupling proportional to the dark energy density. Our data includes Cosmic Microwave Background (CMB) measurements from the Planck 2018 legacy data release, late-time measurements of the expansion history from Baryon Acoustic Oscillations (BAO) and Supernovae Type Ia (SNeIa), galaxy clustering and cosmic shear measurements from the Dark Energy Survey Year 1 results, and the 2019 local distance ladder measurement of the Hubble constant H-0 from the Hubble Space Telescope. Considering Planck data both in combination with BAO or SNeIa data reduces the H-0 tension to a level which could possibly be compatible with a statistical fluctuation. The very same model also significantly reduces the Omega(m) – sigma(8) tension between CMB and cosmic shear measurements. Interactions between the dark sectors of our Universe remain therefore a promising joint solution to these persisting cosmological tensions.  
  Address [Di Valentino, Eleonora] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-6864 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000595300400037 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4646  
Permanent link to this record
 

 
Author Yang, W.Q.; Di Valentino, E.; Pan, S.; Mena, O. url  doi
openurl 
  Title Emergent Dark Energy, neutrinos and cosmological tensions Type Journal Article
  Year 2021 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 31 Issue Pages 100762 - 9pp  
  Keywords  
  Abstract The Phenomenologically Emergent Dark Energy model, a dark energy model with the same number of free parameters as the flat Lambda CDM, has been proposed as a working example of a minimal model which can avoid the current cosmological tensions. A straightforward question is whether or not the inclusion of massive neutrinos and extra relativistic species may spoil such an appealing phenomenological alternative. We present the bounds on M-nu and N-eff and comment on the long standing H-0 and sigma(8) tensions within this cosmological framework with a wealth of cosmological observations. Interestingly, we find, at 95% confidence level, and with the most complete set of cosmological observations, M-nu similar to 0.21(-0.14)(+0.15) eV and N-eff = 3.03 +/- 0.32 i.e. an indication for a non-zero neutrino mass with a significance above 2 sigma. The well known Hubble constant tension is considerably easened, with a significance always below the 2 sigma level. (C) 2020 Elsevier B.V. All rights reserved.  
  Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-6864 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000630235100022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4752  
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O. url  doi
openurl 
  Title Snowmass2021-Letter of interest cosmology intertwined II: The hubble constant tension Type Journal Article
  Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 131 Issue Pages 102605 - 8pp  
  Keywords  
  Abstract The current cosmological probes have provided a fantastic confirmation of the standard A Cold Dark Matter cosmological model, which has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity, a few statistically significant tensions between different independent cosmological datasets emerged. While these tensions can be in part the result of systematic errors, the persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the need for new physics. In this Letter of Interest we will focus on the 4.4 sigma – tension between the Planck estimate of the Hubble constant H-0 and the SH0ES collaboration measurements. After showing the H-0 evaluations made from different teams using different methods and geometric calibrations, we will list a few interesting models of new physics that could solve this tension and discuss how the next decade's experiments will be crucial.  
  Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000657813100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4853  
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O. url  doi
openurl 
  Title Cosmology intertwined III: f sigma(8) and S-8 Type Journal Article
  Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 131 Issue Pages 102604 - 6pp  
  Keywords cosmological tensions; cosmological parameters  
  Abstract The standard A Cold Dark Matter cosmological model provides a wonderful fit to current cosmological data, but a few statistically significant tensions and anomalies were found in the latest data analyses. While these anomalies could be due to the presence of systematic errors in the experiments, they could also indicate the need for new physics beyond the standard model. In this Letter of Interest we focus on the tension between Planck data and weak lensing measurements and redshift surveys, in the value of the matter energy density Omega(m), and the amplitude sigma(8) (or the growth rate f sigma(8)) of cosmic structure. We list a few promising models for solving this tension, and discuss the importance of trying to fit multiple cosmological datasets with complete physical models, rather than fitting individual datasets with a few handpicked theoretical parameters.  
  Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000657813100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4854  
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O. url  doi
openurl 
  Title Snowmass2021-Letter of interest cosmology intertwined IV: The age of the universe and its curvature Type Journal Article
  Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 131 Issue Pages 102607 - 5pp  
  Keywords  
  Abstract A precise measurement of the curvature of the Universe is of prime importance for cosmology since it could not only confirm the paradigm of primordial inflation but also help in discriminating between different early-Universe scenarios. Recent observations, while broadly consistent with a spatially flat standard A Cold Dark Matter (ACDM) model, show tensions that still allow (and, in some cases, even suggest) a few percent deviations from a flat universe. In particular, the Planck Cosmic Microwave Background power spectra, assuming the nominal likelihood, prefer a closed universe at more than 99% confidence level. While new physics could be at play, this anomaly may be the result of an unresolved systematic error or just a statistical fluctuation. However, since positive curvature allows a larger age of the Universe, an accurate determination of the age of the oldest objects provides a smoking gun in confirming or falsifying the current flat ACDM model.  
  Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000657813100007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4855  
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O. url  doi
openurl 
  Title Snowmass2021-Letter of interest cosmology intertwined I: Perspectives for the next decade Type Journal Article
  Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 131 Issue Pages 102606 - 4pp  
  Keywords  
  Abstract The standard Lambda Cold Dark Matter cosmological model provides an amazing description of a wide range of astrophysical and astronomical data. However, there are a few big open questions, that make the standard model look like a first-order approximation to a more realistic scenario that still needs to be fully understood. In this Letter of Interest we will list a few important goals that need to be addressed in the next decade, also taking into account the current discordances present between the different cosmological probes, as the Hubble constant H-0 value, the sigma S-8(8) tension, and the anomalies present in the Planck results. Finally, we will give an overview of upgraded experiments and next-generation space-missions and facilities on Earth that will be of crucial importance to address all these questions.  
  Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000657813100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4856  
Permanent link to this record
 

 
Author Vagnozzi, S.; Di Valentino, E.; Gariazzo, S.; Melchiorri, A.; Mena, O.; Silk, J. url  doi
openurl 
  Title The galaxy power spectrum take on spatial curvature and cosmic concordance Type Journal Article
  Year 2021 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 33 Issue Pages 100851 - 17pp  
  Keywords Cosmological parameters; Spatial curvature; Cosmological tensions  
  Abstract The concordance of the ACDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements appear at face value to favour a spatially closed Universe with curvature parameter Omega(K) < 0. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point of view, using measurements of the full-shape (FS) galaxy power spectrum, P(k), from the Baryon Oscillation Spectroscopic Survey DR12 CMASS sample. By combining Planck data with FS measurements, we break the geometrical degeneracy and find Omega(K) = 0.0023 +/- 0.0028. This constrains the Universe to be spatially flat to sub-percent precision, in excellent agreement with results obtained using BAO measurements. However, as with BAO, the overall increase in the best-fit chi(2) suggests a similar level of tension between Planck and P(k) under the assumption of a curved Universe. While the debate on spatial curvature and the concordance between cosmological datasets remains open, our results provide new perspectives on the issue, highlighting the crucial role of FS measurements in the era of precision cosmology.  
  Address [Vagnozzi, Sunny] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England, Email: sunny.vagnozzi@ast.cam.ac.uk;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000704383100022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4984  
Permanent link to this record
 

 
Author Abdalla, E. et al; Mena, O. url  doi
openurl 
  Title Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies Type Journal Article
  Year 2022 Publication Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.  
  Volume 34 Issue Pages 49-211  
  Keywords  
  Abstract The standard Lambda Cold Dark Matter (Lambda CDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H-0, the sigma(8)-S-8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0 sigma tension between the Planck CMB estimate of the Hubble constant H-0 and the SH0ES collaboration measurements. After showing the H-0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade's experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density Omega(m), and the amplitude or rate of the growth of structure (sigma(8), f sigma(8)). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H-0-S-8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions.  
  Address [Abdalla, Elcio] Univ Sao Paulo, Inst Fis, CP 66318, BR-0531597 Sao Paulo, Brazil, Email: e.divalentino@sheffield.ac.uk  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-4048 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000807122400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5465  
Permanent link to this record
 

 
Author Gariazzo, S.; Mena, O.; Schwetz, T. url  doi
openurl 
  Title Quantifying the tension between cosmological and terrestrial constraints on neutrino masses Type Journal Article
  Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 40 Issue Pages 101226 - 8pp  
  Keywords Neutrino masses; Neutrino mass ordering; Neutrino oscillations; Cosmological measurements of neutrino; masses  
  Abstract The sensitivity of cosmology to the total neutrino mass scale E m & nu; is approaching the minimal values required by oscillation data. We study quantitatively possible tensions between current and forecasted cosmological and terrestrial neutrino mass limits by applying suitable statistical tests such as Bayesian suspiciousness, parameter goodness-of-fit tests, or a parameter difference test. In particular, the tension will depend on whether the normal or the inverted neutrino mass ordering is assumed. We argue, that it makes sense to reject inverted ordering from the cosmology/oscillation comparison only if data are consistent with normal ordering. Our results indicate that, in order to reject inverted ordering with this argument, an accuracy on the sum of neutrino masses & sigma;(m & nu;) of better than 0.02 eV would be required from future cosmological observations.  
  Address [Gariazzo, Stefano] Ist Nazl Fis Nucl INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001042929800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5623  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva