Calibbi, L., Lopez-Ibañez, M. L., Melis, A., & Vives, O. (2020). Muon and electron g – 2 and lepton masses in flavor models. J. High Energy Phys., 06(6), 087–23pp.
Abstract: The stringent experimental bound on μ-> e gamma is compatible with a simultaneous and sizable new physics contribution to the electron and muon anomalous magnetic moments (g – 2)(l) (l = e, mu), only if we assume a non-trivial flavor structure of the dipole operator coefficients. We propose a mechanism in which the realization of the (g – 2)(l) correction is manifestly related to the mass generation through a flavor symmetry. A radiative flavon correction to the fermion mass gives a contribution to the anomalous magnetic moment. In this framework, we introduce a chiral enhancement from a non-trivial O(1) quartic coupling of the scalar potential. We show that the muon and electron anomalies can be simultaneously explained in a vast region of the parameter space with predicted vector-like mediators of masses as large as M chi is an element of [0.6, 2.5] TeV.
|
Falkowski, A., Gonzalez-Alonso, M., & Naviliat-Cuncic, O. (2021). Comprehensive analysis of beta decays within and beyond the Standard Model. J. High Energy Phys., 04(4), 126–36pp.
Abstract: Precision measurements in allowed nuclear beta decays and neutron decay are reviewed and analyzed both within the Standard Model and looking for new physics. The analysis incorporates the most recent experimental and theoretical developments. The results are interpreted in terms of Wilson coefficients describing the effective interactions between leptons and nucleons (or quarks) that are responsible for beta decay. New global fits are performed incorporating a comprehensive list of precision measurements in neutron decay, superallowed 0(+)-> 0(+) transitions, and other nuclear decays that include, for the first time, data from mirror beta transitions. The results confirm the V-A character of the interaction and translate into updated values for V-ud and g(A) at the 10(-4) level. We also place new stringent limits on exotic couplings involving left-handed and right-handed neutrinos, which benefit significantly from the inclusion of mirror decays in the analysis.
|
Dhani, P. K., Rodrigo, G., & Sborlini, G. F. R. (2023). Triple-collinear splittings with massive particles. J. High Energy Phys., 12(12), 188–20pp.
Abstract: We analyze in detail the most singular behaviour of processes involving triple-collinear splittings with massive particles in the quasi-collinear limit, and present compact expressions for the splitting amplitudes and the corresponding splitting kernels at the squared-amplitude level. Our expressions fully agree with well-known triple-collinear splittings in the massless limit, which are used as a guide to achieve the final expressions. These results are important to quantify dominant mass effects in many observables, and constitute an essential ingredient of current high-precision computational frameworks for collider phenomenology.
|
Dhani, P. K., Fedkevych, O., Ghira, A., Marzani, S., & Soyez, G. (2025). Heavy flavour jet substructure. J. High Energy Phys., 02(2), 046–43pp.
Abstract: We present a comprehensive study of energy correlation functions and jet angularities for heavy-flavour QCD jets. In particular, we discuss the possibility of using these observables to expose the dead cone effect, i.e. the suppression of collinear QCD radiation around massive quarks, and to investigate the sensitivity of different observable definitions to the presence of quark masses. Our calculations are presented as all-order resummed predictions at next-to-leading-logarithmic accuracy, matched to (partial) fixed-order results to obtain a better description of the transition around the dead cone threshold. We also compare our analytic results with Pythia, Herwig and Sherpa Monte Carlo predictions to estimate the impact of non-perturbative contributions such as hadronisation, underlying events and B-hadron decays.
|
Becchetti, M., Coro, F., Nega, C., Tancredi, L., & Wagner, F. J. (2025). Analytic two-loop amplitudes for q(q)over-bar → γγ and gg → γγ mediated by a heavy-quark loop. J. High Energy Phys., 06(6), 033–47pp.
Abstract: We address the analytic computation of the two-loop scattering amplitudes for the production of two photons in parton-parton scattering, mediated by loops of heavy quarks. Due to the presence of integrals of elliptic type, both partonic channels have been previously computed using semi-numerical methods. In this paper, leveraging new advances in the theory of differential equations for elliptic Feynman integrals, we derive a canonical basis for all integrals involved and compute them in terms of independent iterated integrals over elliptic and polylogarithmic differential forms. We use this representation to showcase interesting cancellations in the physical expressions for the scattering amplitudes. Furthermore, we address their numerical evaluation by producing series expansion representations for the whole amplitudes, which we demonstrate to be fast and numerically reliable across a large region of the phase space.
|