toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schaffter, T. et al; Albiol, F.; Caballero, L. doi  openurl
  Title Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms Type Journal Article
  Year 2020 Publication JAMA Network Open Abbreviated Journal JAMA Netw. Open  
  Volume 3 Issue 3 Pages e200265 - 15pp  
  Keywords  
  Abstract Importance Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by reducing missed cancers and false positives. Objective To evaluate whether AI can overcome human mammography interpretation limitations with a rigorous, unbiased evaluation of machine learning algorithms. Design, Setting, and Participants In this diagnostic accuracy study conducted between September 2016 and November 2017, an international, crowdsourced challenge was hosted to foster AI algorithm development focused on interpreting screening mammography. More than 1100 participants comprising 126 teams from 44 countries participated. Analysis began November 18, 2016. Main Outcomes and Measurements Algorithms used images alone (challenge 1) or combined images, previous examinations (if available), and clinical and demographic risk factor data (challenge 2) and output a score that translated to cancer yes/no within 12 months. Algorithm accuracy for breast cancer detection was evaluated using area under the curve and algorithm specificity compared with radiologists' specificity with radiologists' sensitivity set at 85.9% (United States) and 83.9% (Sweden). An ensemble method aggregating top-performing AI algorithms and radiologists' recall assessment was developed and evaluated. Results Overall, 144231 screening mammograms from 85580 US women (952 cancer positive <= 12 months from screening) were used for algorithm training and validation. A second independent validation cohort included 166578 examinations from 68008 Swedish women (780 cancer positive). The top-performing algorithm achieved an area under the curve of 0.858 (United States) and 0.903 (Sweden) and 66.2% (United States) and 81.2% (Sweden) specificity at the radiologists' sensitivity, lower than community-practice radiologists' specificity of 90.5% (United States) and 98.5% (Sweden). Combining top-performing algorithms and US radiologist assessments resulted in a higher area under the curve of 0.942 and achieved a significantly improved specificity (92.0%) at the same sensitivity. Conclusions and Relevance While no single AI algorithm outperformed radiologists, an ensemble of AI algorithms combined with radiologist assessment in a single-reader screening environment improved overall accuracy. This study underscores the potential of using machine learning methods for enhancing mammography screening interpretation. Question How do deep learning algorithms perform compared with radiologists in screening mammography interpretation? Findings In this diagnostic accuracy study using 144231 screening mammograms from 85580 women from the United States and 166578 screening mammograms from 68008 women from Sweden, no single artificial intelligence algorithm outperformed US community radiologist benchmarks; including clinical data and prior mammograms did not improve artificial intelligence performance. However, combining best-performing artificial intelligence algorithms with single-radiologist assessment demonstrated increased specificity. Meaning Integrating artificial intelligence to mammography interpretation in single-radiologist settings could yield significant performance improvements, with the potential to reduce health care system expenditures and address resource scarcity experienced in population-based screening programs. This diagnostic accuracy study evaluates whether artificial intelligence can overcome human mammography interpretation limits with a rigorous, unbiased evaluation of machine learning algorithms.  
  Address [Schaffter, Thomas; Hoff, Bruce; Yu, Thomas; Neto, Elias Chaibub; Friend, Stephen; Guinney, Justin] Sage Bionetworks, Computat Oncol, Seattle, WA USA, Email: gustavo@us.ibm.com  
  Corporate Author Thesis  
  Publisher (up) Amer Medical Assoc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-3805 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000519249800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4683  
Permanent link to this record
 

 
Author Bodenstein, S.; Bordes, J.; Dominguez, C.A.; Peñarrocha, J.; Schilcher, K. url  doi
openurl 
  Title Charm-quark mass from weighted finite energy QCD sum rules Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 11 Pages 114013 - 5pp  
  Keywords  
  Abstract The running charm-quark mass in the scheme is determined from weighted finite energy QCD sum rules involving the vector current correlator. Only the short distance expansion of this correlator is used, together with integration kernels (weights) involving positive powers of s, the squared energy. The optimal kernels are found to be a simple pinched kernel and polynomials of the Legendre type. The former kernel reduces potential duality violations near the real axis in the complex s plane, and the latter allows us to extend the analysis to energy regions beyond the end point of the data. These kernels, together with the high energy expansion of the correlator, weigh the experimental and theoretical information differently from e. g. inverse moments finite energy sum rules. Current, state of the art results for the vector correlator up to four-loop order in perturbative QCD are used in the finite energy sum rules, together with the latest experimental data. The integration in the complex s plane is performed using three different methods: fixed order perturbation theory, contour improved perturbation theory, and a fixed renormalization scale mu. The final result is (m) over bar (c)(3 GeV) = 1008 +/- 26 MeV, in a wide region of stability against changes in the integration radius s(0) in the complex s plane.  
  Address [Bodenstein, S.; Dominguez, C. A.] Univ Cape Town, Ctr Theoret & Math Phys, ZA-7700 Rondebosch, South Africa  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286567000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 527  
Permanent link to this record
 

 
Author Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Identification of dark matter particles with LHC and direct detection data Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 5 Pages 055008 - 7pp  
  Keywords  
  Abstract Dark matter (DM) is currently searched for with a variety of detection strategies. Accelerator searches are particularly promising, but even if weakly interacting massive particles are found at the Large Hadron Collider (LHC), it will be difficult to prove that they constitute the bulk of the DM in the Universe Omega(DM). We show that a significantly better reconstruction of the DM properties can be obtained with a combined analysis of LHC and direct detection data, by making a simple Ansatz on the weakly interacting massive particles local density rho(0)((chi) over bar1), i.e., by assuming that the local density scales with the cosmological relic abundance, (rho(0)((chi) over bar1)/rho(DM)) = (Omega(0)((chi) over bar1)/Omega(DM)). We demonstrate this method in an explicit example in the context of a 24-parameter supersymmetric model, with a neutralino lightest supersymmetric particle in the stau coannihilation region. Our results show that future ton-scale direct detection experiments will allow to break degeneracies in the supersymmetric parameter space and achieve a significantly better reconstruction of the neutralino composition and its relic density than with LHC data alone.  
  Address [Bertone, G.] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000281741400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 380  
Permanent link to this record
 

 
Author Fileviez Perez, P.; Iminniyaz, H.; Rodrigo, G.; Spinner, S. url  doi
openurl 
  Title Gauge mediated supersymmetry breaking via seesaw mechanisms Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 9 Pages 095013 - 12pp  
  Keywords  
  Abstract We present a simple scenario for gauge mediated supersymmetry breaking (GMSB) where the messengers are also the fields that generate neutrino masses. We show that the simplest such scenario corresponds to the case where neutrino masses are generated through the type I and type III seesaw mechanisms. The entire supersymmetric spectrum and Higgs masses are calculable from only four input parameters. Since the electroweak symmetry is broken through a doubly radiative mechanism, meaning a nearly zero B term at the messenger scale which runs down to acceptable values, one obtains quite a constrained spectrum for the supersymmetric particles whose properties we describe. We refer to this mechanism as "nu GMSB.''  
  Address [Perez, Pavel Fileviez; Spinner, Sogee] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278145100073 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 440  
Permanent link to this record
 

 
Author Bazzocchi, F.; Cerdeño, D.G.; Muñoz, C.; Valle, J.W.F. url  doi
openurl 
  Title Calculable inverse-seesaw neutrino masses in supersymmetry Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 5 Pages 051701 - 5pp  
  Keywords  
  Abstract We provide a scenario where naturally small and calculable neutrino masses arise from a supersymmetry-breaking renormalization-group-induced vacuum expectation value. The construction consists of an extended version of the next-to-minimal supersymmetric standard model and the mechanism is illustrated for a universal choice of the soft supersymmetry-breaking parameters. The lightest supersymmetric particle can be an isosinglet scalar neutrino state, potentially viable as WIMP dark matter through its Higgs new boson coupling. The scenario leads to a plethora of new phenomenological implications at accelerators including the Large Hadron Collider.  
  Address [Bazzocchi, F.] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands, Email: fbazzoc@few.vu.nl  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276194200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 471  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva