|   | 
Details
   web
Records
Author Franca, U.; Lineros, R.A.; Palacio, J.; Pastor, S.
Title Probing interactions within the dark matter sector via extra radiation contributions Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue 12 Pages 123521 - 6pp
Keywords
Abstract The nature of dark matter is one of the most thrilling riddles for both cosmology and particle physics nowadays. While in the typical models the dark sector is composed only by weakly interacting massive particles, an arguably more natural scenario would include a whole set of gauge interactions which are invisible for the standard model but that are in contact with the dark matter. We present a method to constrain the number of massless gauge bosons and other relativistic particles that might be present in the dark sector using current and future cosmic microwave background data, and provide upper bounds on the size of the dark sector. We use the fact that the dark matter abundance depends on the strength of the interactions with both sectors, which allows one to relate the freeze-out temperature of the dark matter with the temperature of this cosmic background of dark gauge bosons. This relation can then be used to calculate how sizable is the impact of the relativistic dark sector in the number of degrees of freedom of the early Universe, providing an interesting and testable connection between cosmological data and direct/indirect detection experiments. The recent Planck data, in combination with other cosmic microwave background experiments and baryonic acoustic oscillations data, constrains the number of relativistic dark gauge bosons, when the freeze-out temperature of the dark matter is larger than the top mass, to be N less than or similar to 14 for the simplest scenarios, while those limits are slightly relaxed for the combination with the Hubble constant measurements to N less than or similar to 20. Future releases of Planck data are expected to reduce the uncertainty by approximately a factor of 3, which will reduce significantly the parameter space of allowed models.
Address [Franca, Urbano; Lineros, Roberto A.; Palacio, Joaquim; Pastor, Sergio] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain
Corporate Author Thesis
Publisher (down) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000320765300005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1487
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Aab, A. et al); Pastor, S.
Title Probing the radio emission from air showers with polarization measurements Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 89 Issue 5 Pages 052002 - 18pp
Keywords
Abstract The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.
Address [Aab, A.; Buchholz, P.; Foerster, N.; Froehlich, U.; Homola, P.; Niechciol, M.; Pontz, M.; Risse, M.; Settimo, M.; Ziolkowski, M.] Univ Siegen, D-57068 Siegen, Germany
Corporate Author Thesis
Publisher (down) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000333105200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1739
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Aab, A. et al); Pastor, S.
Title Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 1 Pages 012012 - 15pp
Keywords
Abstract The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60 degrees and different energies of the primary particle. From these distributions, we define X-max(mu) as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of X-max(mu) as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.
Address [Aab, A.; Buchholz, P.; Erfani, M.; Froehlich, U.; Heimann, P.; Homola, P.; Niechciol, M.; Ochilo, L.; Risse, M.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, D-57068 Siegen, Germany
Corporate Author Thesis
Publisher (down) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000339922100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1866
Permanent link to this record
 

 
Author de Salas, P.F.; Lattanzi, M.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.
Title Bounds on very low reheating scenarios after Planck Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 92 Issue 12 Pages 123534 - 9pp
Keywords
Abstract We consider the case of very low reheating scenarios [T-RH similar to O(MeV)] with a better calculation of the production of the relic neutrino background (with three-flavor oscillations). At 95% confidence level, a lower bound on the reheating temperature T-RH > 4.1 MeV is obtained from big bang nucleosynthesis, while T-RH > 4.7 MeV from Planck data (allowing neutrino masses to vary), the most stringent bound on the reheating temperature to date. Neutrino masses as large as 1 eV are possible for very low reheating temperatures.
Address [de Salas, P. F.; Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Paterna 46980, Valencia, Spain, Email: lattanzi@fe.infn.it
Corporate Author Thesis
Publisher (down) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000367078600010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2502
Permanent link to this record
 

 
Author Hagstotz, S.; de Salas, P.F.; Gariazzo, S.; Pastor, S.; Gerbino, M.; Lattanzi, M.; Vagnozzi, S.; Freese, K.
Title Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 12 Pages 123524 - 20pp
Keywords
Abstract We present a consistent framework to set limits on properties of light sterile neutrinos coupled to all three active neutrinos using a combination of the latest cosmological data and terrestrial measurements from oscillations, beta-decay, and neutrinoless double-beta-decay (0 nu beta beta) experiments. We directly constrain the full 3 + 1 active-sterile mixing matrix elements vertical bar U-alpha 4 vertical bar(2) , with alpha is an element of (e,mu,tau), and the mass-squared splitting Delta m(41)(2) (math) m(4)(2) – m(1)(2). We find that results for a 3 + 1 case differ from previously studied 1 + 1 scenarios where the sterile is coupled to only one of the neutrinos, which is largely explained by parameter space volume effects. Limits on the mass splitting and the mixing matrix elements are currently dominated by the cosmological datasets. The exact results are slightly prior dependent, but we reliably find all matrix elements to be constrained below vertical bar U-alpha 4 vertical bar(2) less than or similar to 10(-3) . Short-baseline neutrino oscillation hints in favor of eV-scale sterile neutrinos arc in serious tension with these bounds, irrespective of prior assumptions. We also translate the bounds from the cosmological analysis into constraints on the parameters probed by laboratory searches, such as m(beta) or m(beta)(beta), the effective mass parameters probed by beta-decay and 0 nu beta beta searches, respectively. When allowing for mixing with a light sterile neutrino, cosmology leads to upper bounds of m(beta) < 0.09 eV and m(beta)(beta )< 0.07 eV at 95% CL, more stringent than the limits from current laboratory experiments.
Address [Hagstotz, Steffen; de Salas, Pablo F.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, Roslagstullsbacken 21A, SE-10691 Stockholm, Sweden, Email: steffen.hagstotz@fysik.su.se
Corporate Author Thesis
Publisher (down) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000730829500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5055
Permanent link to this record