Di Bari, P., King, S. F., & Hossain Rahat, M. (2024). Gravitational waves from phase transitions and cosmic strings in neutrino mass models with multiple majorons. J. High Energy Phys., 05(5), 068–31pp.
Abstract: We explore the origin of Majorana masses within the majoron model and how this can lead to the generation of a distinguishable primordial stochastic background of gravitational waves. We first show how in the simplest majoron model only a contribution from cosmic string can be within the reach of planned experiments. We then consider extensions containing multiple complex scalars, demonstrating how in this case a spectrum comprising contributions from both a strong first order phase transition and cosmic strings can naturally emerge. We show that the interplay between multiple scalar fields can amplify the phase transition signal, potentially leading to double peaks over the wideband sloped spectrum from cosmic strings. We also underscore the possibility of observing such a gravitational wave background to provide insights into the reheating temperature of the universe. We conclude highlighting how the model can be naturally combined with scenarios addressing the origin of matter of the universe, where baryogenesis occurs via leptogenesis and a right-handed neutrino plays the role of dark matter.
|
Chu, X. Y., Garani, R., Garcia-Cely, C., & Hambye, T. (2024). Dark matter bound-state formation in the Sun. J. High Energy Phys., 05(5), 045–32pp.
Abstract: The Sun may capture asymmetric dark matter (DM), which can subsequently form bound-states through the radiative emission of a sub-GeV scalar. This process enables generation of scalars without requiring DM annihilation. In addition to DM capture on nucleons, the DM-scalar coupling responsible for bound-state formation also induces capture from self-scatterings of ambient DM particles with DM particles already captured, as well as with DM bound-states formed in-situ within the Sun. This scenario is studied in detail by solving Boltzmann equations numerically and analytically. In particular, we take into consideration that the DM self-capture rates require a treatment beyond the conventional Born approximation. We show that, thanks to DM scatterings on bound-states, the number of DM particles captured increases exponentially, leading to enhanced emission of relativistic scalars through bound-state formation, whose final decay products could be observable. We explore phenomenological signatures with the example that the scalar mediator decays to neutrinos. We find that the neutrino flux emitted can be comparable to atmospheric neutrino fluxes within the range of energies below one hundred MeV. Future facilities like Hyper-K, and direct DM detection experiments can further test such scenario.
|
Fu, B. W., Ghoshal, A., King, S. F., & Hossain Rahat, M. (2024). Type-I two-Higgs-doublet model and gravitational waves from domain walls bounded by strings. J. High Energy Phys., 08(8), 237–25pp.
Abstract: The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic strings. The decay of this defect network leads to a unique gravitational wave signal spanning many orders in observable frequencies, that can be distinguished from signals generated by other sources. We investigate the production of gravitational waves from this mechanism in the context of the type-I two-Higgs-doublet model extended by a U(1)R symmetry, that simultaneously accommodates the seesaw mechanism, anomaly cancellation, and eliminates flavour-changing neutral currents. The gravitational wave spectrum produced by the string-bounded-wall network can be detected for U(1)R breaking scale from 1012 to 1015 GeV in forthcoming interferometers including LISA and Einstein Telescope, with a distinctive f3 slope and inflexion in the frequency range between microhertz and hertz.
|
Strumia, A., & Landini, G. (2025). Optical gravitational waves as signals of gravitationally-decaying particles. J. High Energy Phys., 04(4), 068–23pp.
Abstract: Long-lived heavy particles present during the big bang could have a decay channel opened by gravitons. Such decays can produce gravitational waves with large enough abundance to be detectable, and a peculiar narrow spectrum peaked today around optical frequencies. We identify which particles can decay in one or two gravitons. The maximal gravitational wave abundance arises from theories with extra hidden strong gauge dynamics, such as a confining pure-glue group. An interesting abundance also arises in theories with perturbative couplings. Future observation might shed light on early cosmology and allow some spectroscopy of sub-Planckian gravitationally-decaying particles, plausibly present in a variety of theories such as gauge unification, supersymmetry, extra dimensions, strings.
|
Fu, B. W., King, S. F., Marsili, L., Pascoli, S., Turner, J., & Zhou, Y. L. (2025). Non-Abelian domain walls and gravitational waves. J. High Energy Phys., 04(4), 142–29pp.
Abstract: We investigate the properties of domain walls arising from non-Abelian discrete symmetries, which we refer to as non-Abelian domain walls. We focus on S4, one of the most commonly used groups in lepton flavour mixing models. The spontaneous breaking of S4 leads to distinct vacua preserving a residual Z2 or Z3 symmetry. Five types of domain walls are found, labelled as SI, SII, TI, TII, and TIII, respectively, the former two separating Z2 vacua and the latter three separating Z3 vacua. We highlight that SI, TI and TIII may be unstable for some regions of the parameter space and decay to stable domain walls. Stable domain walls can collapse and release gravitational radiation for a suitable size of explicit symmetry breaking. A symmetry-breaking scale of order 100 TeV may explain the recent discovery of nanohertz gravitational waves by PTA experiments. For the first time, we investigate the properties of these domain walls, which we obtain numerically with semi-analytical formulas applied to compute the tension and thickness across a wide range of parameter space. We estimate the resulting gravitational wave spectrum and find that, thanks to their rich vacuum structure, non-Abelian domain walls manifest in a very interesting and complex phenomenology.
|