|   | 
Details
   web
Records
Author Poley, L. et al; Lacasta, C.; Soldevila, U.
Title Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 11 Issue Pages P07023 - 12pp
Keywords Inspection with x-rays; Si microstrip and pad detectors; Hybrid detectors; Instrumentation for particle accelerators and storage rings – high energy (linear accelerators, synchrotrons)
Abstract The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6.10(34) cm(-2) s(-1). A consequence of this increased luminosity is the expected radiation damage at 3000 fb(-1) after ten years of operation, requiring the tracking detectors to withstand fluences to over 1.10(16) 1 MeV n(eq)/cm(2) . In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (end-cap) strip sensor – utilizing bi-metal readout layers – wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 μm strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.
Address [Poley, L.; Bloch, I.; Diez, S.; Gregor, I. -M.; Lohwasser, K.] DESY, Notkestr, Hamburg, Germany, Email: Anne-Luise.Poley@desy.de
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000387763000014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2872
Permanent link to this record
 

 
Author Kuehn, S. et al; Bernabeu, J.; Lacasta, C.; Marco-Hernandez, R.; Santoyo, D.; Solaz, C.; Soldevila, U.
Title Prototyping of hybrids and modules for the forward silicon strip tracking detector for the ATLAS Phase-II upgrade Type Journal Article
Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 12 Issue Pages P05015 - 26pp
Keywords Si microstrip and pad detectors; Particle tracking detectors (Solid-state detectors); Solid state detectors
Abstract For the High-Luminosity upgrade of the Large Hadron Collider an increased instantaneous luminosity of up to 7.5 . 10(34) cm(-2) s(-1), leading to a total integrated luminosity of up to 3000 fb(-1), is foreseen. The current silicon and transition radiation tracking detectors of the ATLAS experiment will be unable to cope with the increased track densities and radiation levels, and will need to be replaced. The new tracking detector will consist entirely of silicon pixel and strip detectors. In this paper, results on the development and tests of prototype components for the new silicon strip detector in the forward regions (end-caps) of the ATLAS detector are presented. Flex-printed readout boards with fast readout chips, referred to as hybrids, and silicon detector modules are investigated. The modules consist of a hybrid glued onto a silicon strip sensor. The channels on both are connected via wire-bonds for readout and powering. Measurements of important performance parameters and a comparison of two possible readout schemes are presented. In addition, the assembly procedure is described and recommendations for further prototyping are derived.
Address [Kuehn, S.] CERN, European Org Nucl Res, Expt Phys, Route Meyrin 385, CH-1211 Geneva 23, Switzerland, Email: susanne.kuehn@cern.ch
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000405076000015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3221
Permanent link to this record
 

 
Author Poley, L. et al; Lacasta, C.
Title Investigations into the impact of locally modified sensor architectures on the detection efficiency of silicon micro-strip sensors Type Journal Article
Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 12 Issue Pages P07006 - 17pp
Keywords Si microstrip and pad detectors; Inspection with x-rays; Hybrid detectors; Instrumentation for particle accelerators and storage rings – high energy (linear accelerators, synchrotrons)
Abstract The High Luminosity Upgrade of the LHC will require the replacement of the Inner Detector of ATLAS with the Inner Tracker (ITk) in order to cope with higher radiation levels and higher track densities. Prototype silicon strip detector modules are currently developed and their performance is studied in both particle test beams and X-ray beams. In previous test beam measurements of prototype modules, the response of silicon sensors has been studied in detailed scans across individual sensor strips. These scans found instances of sensor strips collecting charge across areas on the sensor deviating from the geometrical width of a sensor strip. The variations have been linked to local features of the sensor architecture. This paper presents results of detailed sensor measurements in both X-ray and particle beams investigating the impact of sensor features (metal pads and p-stops) on the sensor strip response.
Address [Poley, L.] DESY, Notkestr, Hamburg, Germany, Email: Anne-Luise.Poley@desy.de
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000406392600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3234
Permanent link to this record
 

 
Author Kuehn, S. et al; Bernabeu, J.; Lacasta, C.; Marco-Hernandez, R.; Rodriguez Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila Serrano, U.
Title Prototyping of petalets for the Phase-II upgrade of the silicon strip tracking detector of the ATLAS experiment Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages T03004 - 22pp
Keywords Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors; Solid state detectors; Performance of High Energy Physics Detectors
Abstract In the high luminosity era of the Large Hadron Collider, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.
Address [Kuehn, S.] European Org Nucl Res, CERN, Geneva, Switzerland, Email: susanne.kuehn@cern.ch
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000428146400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3530
Permanent link to this record
 

 
Author Poley, L.; Blue, A.; Bloch, I.; Buttar, C.; Fadeyev, V.; Fernandez-Tejero, J.; Fleta, C.; Hacker, J.; Lacasta, C.; Miñano, M.; Renzmann, M.; Rossi, E.; Sawyer, C.; Sperlich, D.; Stegler, M.; Ullan, M.; Unno, Y.
Title Mapping the depleted area of silicon diodes using a micro-focused X-ray beam Type Journal Article
Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 14 Issue Pages P03024 - 14pp
Keywords Si microstrip and pad detectors; Detector design and construction technologies and materials; Particle tracking detectors (Solid-state detectors); Radiation-hard detectors
Abstract For the Phase-II Upgrade of the ATLAS detector at CERN, the current ATLAS Inner Detector will be replaced with the ATLAS Inner Tracker (ITk). The ITk will be an all-silicon detector, consisting of a pixel tracker and a strip tracker. Sensors for the ITk strip tracker are required to have a low leakage current up to bias voltages of 500V to maintain a low noise and power dissipation. In order to minimise sensor leakage currents, particularly in the high-radiation environment inside the ATLAS detector, sensors are foreseen to be operated at low temperatures and to be manufactured from wafers with a high bulk resistivity of several k Omega.cm. Simulations showed the electric field inside sensors with high bulk resistivity to extend towards the sensor edge, which could lead to increased surface currents for narrow dicing edges. In order to map the electric field inside biased silicon sensors with high bulk resistivity, three diodes from ATLAS silicon strip sensor prototype wafers were studied with a monochromatic, micro-focused X-ray beam at the Diamond Light Source (Didcot, U.K.). For all devices under investigation, the electric field inside the diode was mapped and its dependence on the applied bias voltage was studied.
Address [Poley, L.] Lawrence Berkeley Natl Lab, Cyclotron Rd, Berkeley, CA 94720 USA, Email: Anne-Luise.Poley@desy.de
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000463330900012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3973
Permanent link to this record