|   | 
Details
   web
Records
Author Cui, Z.F.; Zhang, J.L.; Binosi, D.; De Soto, F.; Mezrag, C.; Papavassiliou, J.; Roberts, C.D.; Rodriguez-Quintero, J.; Segovia, J.; Zafeiropoulos, S.
Title Effective charge from lattice QCD Type Journal Article
Year 2020 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 44 Issue 8 Pages 083102 - 10pp
Keywords running coupling; quantum chromodynamics; Dyson-Schwinger equations; lattice field theory; emergence of mass; confinement
Abstract Using lattice configurations for quantum chromodynamics (QCD) generated with three domain-wall fermions at a physical pion mass, we obtain a parameter-free prediction of QCD 's renormalisation-group-invariant process-independent effective charge, (alpha) over cap (k(2)). Owing to the dynamical breaking of scale invariance, evident in the emergence of a gluon mass-scale, m(0) = 0.43(1) GeV, this coupling saturates at infrared momenta: (alpha) over cap/pi = 0.97(4). Amongst other things: (alpha) over cap (k(2)) is almost identical to the process-dependent (PD) effective charge defined via the Bjorken sum rule; and also that PD charge which, employed in the one-loop evolution equations, delivers agreement between pion parton distribution functions computed at the hadronic scale and experiment. The diversity of unifying roles played by (alpha) over cap (k(2)) suggests that it is a strong candidate for that object which represents the interaction strength in QCD at any given momentum scale; and its properties support a conclusion that QCD is a mathematically well-defined quantum field theory in four dimensions.
Address [Cui, Z-F; Roberts, C. D.] Nanjing Univ, Sch Phys, Nanjing 210093, Peoples R China, Email: cdroberts@nju.edu.cn;
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000557419600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4495
Permanent link to this record
 

 
Author Aguilar, A.C.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Rodriguez-Quintero, J.; Zafeiropoulos, S.
Title Gluon propagator and three-gluon vertex with dynamical quarks Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 2 Pages 154 - 17pp
Keywords
Abstract We present a detailed analysis of the kinetic and mass terms associated with the Landau gauge gluon propagator in the presence of dynamical quarks, and a comprehensive dynamical study of certain special kinematic limits of the three-gluon vertex. Our approach capitalizes on results from recent lattice simulations with (2+1) domain wall fermions, a novel nonlinear treatment of the gluon mass equation, and the nonperturbative reconstruction of the longitudinal three-gluon vertex from its fundamental Slavnov-Taylor identities. Particular emphasis is placed on the persistence of the suppression displayed by certain combinations of the vertex form factors at intermediate and low momenta, already known from numerous pure Yang-Mills studies. One of our central findings is that the inclusion of dynamical quarks moderates the intensity of this phenomenon only mildly, leaving the asymptotic low-momentum behavior unaltered, but displaces the characteristic “zero crossing” deeper into the infrared region. In addition, the effect of the three-gluon vertex is explored at the level of the effective gauge coupling, whose size is considerably reduced with respect to its counterpart obtained from the ghost-gluon vertex. The main upshot of the above considerations is the further confirmation of the tightly interwoven dynamics between the two- and three-point sectors of QCD.
Address [Aguilar, A. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br
Corporate Author Thesis
Publisher (up) Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000517203200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4314
Permanent link to this record