toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Centelles Chulia, S.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Seesaw Dirac neutrino mass through dimension-six operators Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 3 Pages 035009 - 18pp  
  Keywords  
  Abstract In this paper, a follow-up of [S. C. Chulia, R. Srivastava, and J. W. F. Valle, Phys. Lett. B 781, 122 (2018)], we describe the many pathways to generate Dirac neutrino mass through dimension-six operators. By using only the standard model Higgs doublet in the external legs, one gets a unique operator 1/Lambda(2) (L) over bar (Phi) over bar (Phi) over bar Phi nu(R). In contrast, the presence of new scalars implies new possible field contractions, which greatly increase the number of possibilities. Here, we study in detail the simplest ones, involving SU(2)(L) singlets, doublets, and triplets. The extra symmetries needed to ensure the Dirac nature of neutrinos can also be responsible for stabilizing dark matter.  
  Address [Chulia, Salvador Centelles; Srivastava, Rahul; Valle, Jose W. F.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna C Catedrat Jose Beltran,2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000441013200003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3686  
Permanent link to this record
 

 
Author Chen, P.; Centelles Chulia, S.; Ding, G.J.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Realistic tribimaximal neutrino mixing Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 5 Pages 055019 - 6pp  
  Keywords  
  Abstract We propose a generalized version of the tribimaximal (TBM) ansatz for lepton mixing, leading to a nonzero reactor angle theta(13) and CP violation. The latter is characterized by two CP phases. The Dirac phase, affecting neutrino oscillations, is nearly maximal (delta(CP) similar to +/- pi/2), while the Majorana phase implies narrow allowed ranges for the neutrinoless double beta decay amplitude. The solar angle theta(12) lies nearly at its TBM value, while the atmospheric angle theta(23) has the TBM value for a maximal delta(CP). Neutrino oscillation predictions can be tested in present and upcoming experiments.  
  Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Peoples R China, Email: pche@mail.ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000444729900004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3733  
Permanent link to this record
 

 
Author De Romeri, V.; Patel, K.M.; Valle, J.W.F. url  doi
openurl 
  Title Inverse seesaw mechanism with compact supersymmetry: Enhanced naturalness and light superpartners Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 7 Pages 075014 - 15pp  
  Keywords  
  Abstract We consider the supersymmetric inverse seesaw mechanism for neutrino mass generation within the context of a low-energy effective theory where supersymmetry is broken geometrically in an extra dimensional theory. It is shown that the effective scale characterizing the resulting compact supersymmetric spectrum can be as low as 500-600 GeV for moderate values of tan beta. The potentially large neutrino Yukawa couplings, naturally present in inverse seesaw schemes, enhance the Higgs mass and allow the superpartners to be lighter than in compact supersymmetry without neutrino masses. The inverse seesaw structure also implies a novel spectrum profile and couplings, in which the lightest supersymmetric particle can be an admixture of isodoublet and isosinglet sneutrinos. Dedicated collider as well as dark matter studies should take into account such specific features.  
  Address [De Romeri, Valentina; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Calle Catedratico Jose Beltran 2, E-46980 Paterna, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000447485900006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3764  
Permanent link to this record
 

 
Author Bonilla, C.; Modak, T.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title U(1)(B3-3L2) gauge symmetry as a simple description of b -> s anomalies Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 9 Pages 095002 - 11pp  
  Keywords  
  Abstract We present a simple U(1)(B3-3L2) gauge standard model extension that can easily account for the anomalies in R(K) and R(K*) reported by LHCb. The model is economical in its setup and particle content. Among the standard model fermions, only the third generation quark family and the second generation leptons transform nontrivially under the new U(1)(B3-3L2) symmetry. This leads to lepton nonuniversality and flavor changing neutral currents involving the second and third quark families. We discuss the relevant experimental constraints and some implications.  
  Address [Bonilla, Cesar] Tech Univ Munich, Phys Dept T30d, James Franck Str, D-85748 Garching, Germany, Email: cesar.bonilla@tum.de;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000448926500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3785  
Permanent link to this record
 

 
Author Reig, M.; Valle, J.W.F.; Wilczek, F. url  doi
openurl 
  Title SO(3) family symmetry and axions Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 9 Pages 095008 - 6pp  
  Keywords  
  Abstract Motivated by the idea of comprehensive unification, we study a gauged SO(3) flavor extension of the extended Standard Model, including right-handed neutrinos and a Peccei-Quinn symmetry with simple charge assignments. The model accommodates the observed fermion masses and mixings and yields a characteristic, successful relation among them. The Peccei-Quinn symmetry is an essential ingredient.  
  Address [Reig, Mario; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mario.reig@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000450140200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3806  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva