toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author NEXT Collaboration (Trindade, A.M.F. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Simon, A.; Sorel, M.; Torrent, J.; Yahlali, N. doi  openurl
  Title Study of the loss of xenon scintillation in xenon-trimethylamine mixtures Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 905 Issue Pages 22-28  
  Keywords Gaseous radiation detectors; Noble gas mixtures; Molecular additives; VUV absorption  
  Abstract This work investigates the capability of TMA ((CH3)(3)N) molecules to shift the wavelength of Xe VUV emission (160-188 nm) to a longer, more manageable, wavelength (260-350 nm). Light emitted from a Xe lamp was passed through a gas chamber filled with Xe-TMA mixtures at 800 Torr and detected with a photomultiplier tube. Using bandpass filters in the proper transmission ranges, no reemitted light was observed experimentally. Considering the detection limit of the experimental system, if reemission by TMA molecules occurs, it is below 0.3% of the scintillation absorbed in the 160-188 nm range. An absorption coefficient value for xenon VUV light by TMA of 0.43 +/- 0.03 cm(-1) Torr(-1) was also obtained. These results can be especially important for experiments considering TMA as a molecular additive to Xe in large volume optical time projection chambers.  
  Address [Trindade, A. M. F.; Escada, J.; Cortez, A. F., V; Borges, F. I. G. M.; Santos, F. P.; Conde, C. A. N.] LIP Lab Instrumentacao & Fis Expt Particulas, Coimbra, Portugal, Email: Kalexandre.trindade@coimbra.lip.pt  
  Corporate Author Thesis  
  Publisher (down) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000444425700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3730  
Permanent link to this record
 

 
Author NEXT Collaboration (Felkai, R. et al); Sorel, M.; Lopez-March, N.; Gomez-Cadenas, J.J.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Ferrario, P.; Laing, A.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Romo-Luque, C.; Rodriguez, J.; Simon, A.; Torrent, J.; Yahlali, N. url  doi
openurl 
  Title Helium-Xenon mixtures to improve the topological signature in high pressure gas xenon TPCs Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 905 Issue Pages 82-90  
  Keywords Helium; Xenon; Double-beta decay; TPC; Low diffusion; Electroluminescence  
  Abstract Within the framework of xenon-based double beta decay experiments, we propose the possibility to improve the background rejection of an electroluminescent Time Projection Chamber (EL TPC) by reducing the diffusion of the drifting electrons while keeping nearly intact the energy resolution of a pure xenon EL TPC. Based on state-of-the-art microscopic simulations, a substantial addition of helium, around 10 or 15 %, may reduce drastically the transverse diffusion down to 2.5 mm/root m from the 10.5 mm/root m of pure xenon. The longitudinal diffusion remains around 4 mm/root m. Light production studies have been performed as well. They show that the relative variation in energy resolution introduced by such a change does not exceed a few percent, which leaves the energy resolution practically unchanged. The technical caveats of using photomultipliers close to an helium atmosphere are also discussed in detail.  
  Address [Adams, C.; Guenette, R.; Martin-Albo, J.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: francesc.monrabalcapilla@uta.edu  
  Corporate Author Thesis  
  Publisher (down) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000444425700010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3731  
Permanent link to this record
 

 
Author Alvarez, V.; Herrero-Bosch, V.; Esteve, R.; Laing, A.; Rodriguez, J.; Querol, M.; Monrabal, F.; Toledo, J.F.; Gomez-Cadenas, J.J. url  doi
openurl 
  Title The electronics of the energy plane of the NEXT-White detector Type Journal Article
  Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 917 Issue Pages 68-76  
  Keywords Calorimetry; Front-end electronics; Digital baseline restoration  
  Abstract This paper describes the electronics of NEXT-White (NEW) detector PMT plane, a high pressure xenon TPC with electroluminescent amplification (HPXe-EL) currently operating at the Laboratorio Subterraneo de Canfranc (LSC) in Huesca, Spain. In NEXT-White the energy of the event is measured by a plane of photomultipliers (PMTs) located behind a transparent cathode. The PMTs are Hamamatsu R11410-10 chosen due to their low radioactivity. The electronics have been designed and implemented to fulfill strict requirements: an overall energy resolution below 1% and a radiopurity budget of 20 mBq unit(-1) in the chain of Bi-214. All the components and materials have been carefully screened to assure a low radioactivity level and at the same time meet the required front-end electronics specifications. In order to reduce low frequency noise effects and enhance detector safety a grounded cathode connection has been used for the PMTs. This implies an AC-coupled readout and baseline variations in the PMT signals. A detailed description of the electronics and a novel approach based on a digital baseline restoration to obtain a linear response and handle AC coupling effects is presented. The final PMT channel design has been characterized with linearity better than 0.4% and noise below 0.4 mV.  
  Address [Alvarez, V; Laing, A.; Rodriguez, J.; Querol, M.; Gomez-Cadenas, J. J.] CSIC, IFIC, Inst Fis Corpuscular, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: vicente.alvarez@ific.uv.es  
  Corporate Author Thesis  
  Publisher (down) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000455016500010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3868  
Permanent link to this record
 

 
Author HARP Collaboration (Apollonio, M. et al); Burguet-Castell, J.; Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Martin-Albo, J.; Novella, P.; Sorel, M. url  doi
openurl 
  Title Measurements of forward proton production with incident protons and charged pions on nuclear targets at the CERN Proton Synchroton Type Journal Article
  Year 2010 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 82 Issue 4 Pages 045208 - 33pp  
  Keywords  
  Abstract Measurements of the double-differential proton production cross-section d(2 sigma)/dpd Omega in the range of momentum 0.5 GeV/c <= p < 8.0 GeV/c and angle 0.05 rad <= theta < 0.25 rad in collisions of charged pions and protons on beryllium, carbon, aluminium, copper, tin, tantalum, and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN Proton Synchrotron. Incident particles were identified by an elaborate system of beam detectors and impinged on a target of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP experiment. Results are obtained for the double-differential cross-sections mainly at four incident beam momenta (3, 5, 8, and 12 GeV/c). Measurements are compared with predictions of the GEANT4 and MARS Monte Carlo generators.  
  Address [Bonesini, M.; Ferri, F.] Sez INFN Milano Bicocca, Milan, Italy, Email: maurizio.bonesini@mib.infn.it  
  Corporate Author Thesis  
  Publisher (down) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283579000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 346  
Permanent link to this record
 

 
Author K2K Collaboration (Mariani, C. et al); Cervera-Villanueva, A.; Tornero-Lopez, A.; Burguet-Castell, J.; Catala, J.; Gomez-Cadenas, J.J.; Novella, P.; Sitjes, G.; Sorel, M. url  doi
openurl 
  Title Measurement of inclusive pi(0) production in the charged-current interactions of neutrinos in a 1.3-GeV wide band beam Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 5 Pages 054023 - 17pp  
  Keywords  
  Abstract In this paper, we report on the measurement of the rate of inclusive pi(0) production induced by charged-current neutrino interactions in a C8H8 target at a mean energy of 1.3 GeV in the K2K near detector. Out of a sample of 11 606 charged- current neutrino interactions, we select 479 pi(0) events with two reconstructed photons. We find that the cross section for the inclusive pi(0) production relative to the charged-current quasielastic cross section is (CC)-C-sigma pi(0)/sigma CCQE = 0.426 +/- 0.032 (stat) +/- 0.035 (syst). The energy-dependent cross section ratio is also measured. The results are consistent with previous experiments for exclusive channels on different targets.  
  Address [Alcaraz, J. L.; Andringa, S.; Espinal, X.; Fernandez, E.; Jover Manas, G.; Nova, F.; Rodriguez, A.; Sanchez, F.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain  
  Corporate Author Thesis  
  Publisher (down) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000288448700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 597  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva