Moreno, O., Sarriguren, P., Algora, A., Fraile, L. M., & Orrigo, S. E. A. (2022). Bulk and decay properties of neutron-deficient odd-mass Hg isotopes near A=185. Phys. Rev. C, 106(3), 034317–11pp.
Abstract: Ground and isomeric states of the neutron-deficient odd-A isotopes 183Hg, 185Hg, and 187Hg are described from a microscopic calculation based on a self-consistent, axially deformed Hartree-Fock mean field with the Skyrme functional and pairing within BCS approximation. For each equilibrium shape and different odd-neutron states, results on mean-square charge radii and magnetic dipole moments are given and analyzed in the context of their sensitivity to the nuclear deformation and to the spin and parity. Spin-isospin correlations within proton-neutron quasiparticle random phase approximation are then introduced in the nuclear states to obtain the distributions of Gamow-Teller strength and the beta+/EC half-lives of these isotopes, whose measurements are planned at ISOLDE-CERN using total absorption gamma-ray spectroscopy techniques.
|
Wu, J. et al, Algora, A., Agramunt, J., Morales, A. I., Orrigo, S. E. A., Tain, J. L., et al. (2022). First observation of isomeric states in 111Zr, 113Nb, and 115Mo. Phys. Rev. C, 106(6), 064328–5pp.
Abstract: Isomeric states in the neutron-rich nuclei 111Zr [T1/2 = 0.10(7) μs], 113Nb [T1/2 = 0.7(4) μs], 115Mo [T1/2 = 46(3) μs] were first identified at the Radioactive Ion Beam Factory (RIBF) of RIKEN by using in-flight fission and fragmentation of a 238U beam at an energy of 345 MeV/u. This is a brief report of the gamma transitions de -exciting from isomeric states and half-lives measurements, which provides the first spectroscopy in the nuclear region of prolate-to-oblate shape-phase transition around mass A approximate to 110.
|
Yeung, T. T. et al, Morales, A. I., Tain, J. L., Alcala, G., Algora, A., Agramunt, J., et al. (2024). First Exploration of Monopole-Driven Shell Evolution above the N=126 Shell Closure: New Millisecond Isomers in Tl-213 and Tl-215. Phys. Rev. Lett., 133(7), 072501–7pp.
Abstract: Isomer spectroscopy of heavy neutron-rich nuclei beyond the N = 126 closed shell has been performed for the first time at the Radioactive Isotope Beam Factory of the RIKEN Nishina Center. New millisecond isomers have been identified at low excitation energies, 985.3(19) keV in Tl-213 and 874(5) keV in Tl-215. The measured half-lives of 1.34(5) ms in Tl-213 and 3.0(3) ms in Tl-215 suggest spins and parities 11/2(-) with the single proton-hole configuration pi h(11/2) as leading component. They are populated via E1 transitions by the decay of higher-lying isomeric states with proposed spin and parity 17/2(+), interpreted as arising from a single pi s(1/2) proton hole coupled to the 8(+) seniority isomer in the PbA + 1 cores. The lowering of the 11/2(-) states is ascribed to an increase of the pi h(11/2) proton effective single-particle energy as the second nu g(9/2) orbital is filled by neutrons, owing to a significant reduction of the proton-neutron monopole interaction between the pi h(11/2) and nu g(9/2) orbitals. The new ms isomers provide the first experimental observation of shell evolution in the almost unexplored N > 126 nuclear region below doubly magic Pb-208.
|
Algora, A. et al, Rubio, B., Agramunt, J., Guadilla, V., Montaner-Piza, A., Morales, A. I., et al. (2025). Isospin Symmetry Breaking in the 71Kr and 71Br Mirror System. Phys. Rev. Lett., 134(16), 162502–9pp.
Abstract: Isospin symmetry is a fundamental concept in nuclear physics. Even though isospin symmetry is partially broken, it holds approximately for most nuclear systems, which makes exceptions very interesting from the nuclear structure perspective. In this framework, it is expected that the spins and parities of the ground states of mirror nuclei should be the same, in particular for the simplest systems where a proton is exchanged with a neutron or vice versa. In this Letter, we present evidence that this assumption is broken in the mirror pair 71Br and 71Kr system. Our conclusions are based on a high-statistics /3 decay study of 71Kr and on state-of-the-art shell model calculations. In our work, we also found evidence of a new state in 70Se, populated in the /3-delayed proton emission process which can be interpreted as the long sought coexisting 0 & thorn; state.
|
XENON Collaboration(Aprile, E. et al), & Orrigo, S. E. A. (2015). Exclusion of leptophilic dark matter models using XENON100 electronic recoil data. Science, 349(6250), 851–854.
Abstract: Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 x 10(-35) cm(2) for particle masses of m(chi) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4 sigma confidence level, mirror dark matter at 3.6 sigma, and luminous dark matter at 4.6 sigma.
|