toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Moline, A.; Ibarra, A.; Palomares-Ruiz, S. url  doi
openurl 
  Title Future sensitivity of neutrino telescopes to dark matter annihilations from the cosmic diffuse neutrino signal Type Journal Article
  Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 005 - 34pp  
  Keywords dark matter theory; dark matter simulations; cosmological neutrinos  
  Abstract Cosmological observations and cold dark matter N-body simulations indicate that our Universe is populated by numerous halos, where dark matter particles annihilate, potentially producing Standard Model particles. In this paper we calculate the contribution to the diffuse neutrino background from dark matter annihilations in halos at all redshifts and we estimate the future sensitivity to the annihilation cross section of neutrino telescopes such as IceCube or ANTARES. We consider various parametrizations to describe the internal halo properties and for the halo mass function in order to bracket the theoretical uncertainty in the limits from the modeling of the cosmological annihilation flux. We find that observations of the cosmic diffuse neutrino flux at large angular distances from the galactic center lead to constraints on the dark matter annihilation cross section which are complementary to ( and for some extrapolations of the astrophysical parameters, better than) those stemming from observations of the Milky Way halo, especially for neutrino telescopes not pointing directly to the Milky Way center, as is the case of IceCube.  
  Address [Moline, Angeles] Univ Tecn Lisboa, Inst Super Tecn, CFTP, P-1049001 Lisbon, Portugal, Email: maria.moline@ist.utl.pt;  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000359215400006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2369  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Mitsou, V.A.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Modelling Z -> ττ processes in ATLAS with τ-embedded Z -> μμ data Type Journal Article
  Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 10 Issue Pages P09018 - 41pp  
  Keywords Performance of High Energy Physics Detectors; Simulation methods and programs; Analysis and statistical methods  
  Abstract This paper describes the concept, technical realisation and validation of a largely data-driven method to model events with Z -> tau tau decays. In Z -> μμevents selected from proton-proton collision data recorded at root s = 8 TeV with the ATLAS experiment at the LHC in 2012, the Z decay muons are replaced by tau leptons from simulated Z -> tau tau decays at the level of reconstructed tracks and calorimeter cells. The tau lepton kinematics are derived from the kinematics of the original muons. Thus, only the well-understood decays of the Z boson and tau leptons as well as the detector response to the tau decay products are obtained from simulation. All other aspects of the event, such as the Z boson and jet kinematics as well as effects from multiple interactions, are given by the actual data. This so-called tau-embedding method is particularly relevant for Higgs boson searches and analyses in tau tau final states, where Z -> tau tau decays constitute a large irreducible background that cannot be obtained directly from data control samples. In this paper, the relevant concepts are discussed based on the implementation used in the ATLAS Standard Model H -> tau tau analysis of the full datataset recorded during 2011 and 2012.  
  Address [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000362421300021 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2410  
Permanent link to this record
 

 
Author Achterberg, A.; Amoroso, S.; Caron, S.; Hendriks, L.; Ruiz de Austri, R.; Weniger, C. url  doi
openurl 
  Title A description of the Galactic Center excess in the Minimal Supersymmetric Standard Model Type Journal Article
  Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages 006 - 27pp  
  Keywords dark matter theory; dark matter simulations; dark matter experiments  
  Abstract Observations with the Fermi Large Area Telescope (LAT) indicate an excess in gamma rays originating from the center of our Galaxy. A possible explanation for this excess is the annihilation of Dark Matter particles. We have investigated the annihilation of neutralinos as Dark Matter candidates within the phenomenological Minimal Supersymmetric Standard Model (pMSSM). An iterative particle filter approach was used to search for solutions within the pMSSM. We found solutions that are consistent with astroparticle physics and collider experiments, and provide a fit to the energy spectrum of the excess. The neutralino is a Bino/Higgsino or Bino/Wino/Higgsino mixture with a mass in the range 84-92 GeV or 87-97 GeV annihilating into W bosons. A third solutions is found for a neutralino of mass 174-187 GeV annihilating into top quarks. The best solutions yield a Dark Matter relic density 0.06 < Omega h(2) < 0.13. These pMSSM solutions make clear forecasts for LHC, direct and indirect DM detection experiments. If the pMSSM explanation of the excess seen by Fermi-LAT is correct, a DM signal might be discovered soon.  
  Address [Achterberg, Abraham; Caron, Sascha; Hendriks, Luc] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Fac Sci, NL-6500 GL Nijmegen, Netherlands, Email: a.achterberg@astro.ru.nl;  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000365046600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2455  
Permanent link to this record
 

 
Author Di Molfetta, G.; Perez, A. url  doi
openurl 
  Title Quantum walks as simulators of neutrino oscillations in a vacuum and matter Type Journal Article
  Year 2016 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 18 Issue Pages 103038 - 8pp  
  Keywords quantum walks; neutrino oscillations; quantum simulation  
  Abstract We analyze the simulation of Dirac neutrino oscillations using quantum walks, both in a vacuum and in matter. We show that this simulation, in the continuum limit, reproduces a set of coupled Dirac equations that describe neutrino flavor oscillations, and we make use of this to establish a connection with neutrino phenomenology, thus allowing one to fix the parameters of the simulation for a given neutrino experiment. We also analyze how matter effects for neutrino propagation can be simulated in the quantum walk. In this way, important features, such as the MSW effect, can be incorporated. Thus, the simulation of neutrino oscillations with the help of quantum walks might be useful to illustrate these effects in extreme conditions, such as the solar interior or supernovae.  
  Address [Di Molfetta, G.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: giuseppe.dimolfetta@lif.univ-mrs.fr  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386816100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2846  
Permanent link to this record
 

 
Author Moline, A.; Schewtschenko, J.A.; Palomares-Ruiz, S.; Boehm, C.; Baugh, C.M. url  doi
openurl 
  Title Isotropic extragalactic flux from dark matter annihilations: lessons from interacting dark matter scenarios Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages 069 - 23pp  
  Keywords dark matter simulations; dark matter theory; gamma ray theory  
  Abstract The extragalactic gamma-ray and neutrino emission may have a contribution from dark matter (DM) annihilations. In the case of discrepancies between observations and standard predictions, one could infer the DM pair annihilation cross section into cosmic rays by studying the shape of the energy spectrum. So far all analyses of the extragalactic DM signal have assumed the standard cosmological model (ACDM) as the underlying theory. However, there are alternative DM scenarios where the number of low-mass objects is significantly suppressed. Therefore the characteristics of the gamma-ray and neutrino emission in these models may differ from ACDM as a result. Here we show that the extragalactic isotropic signal in these alternative models has a similar energy dependence to that in ACDM, but the overall normalisation is reduced. The similarities between the energy spectra combined with the flux suppression could lead one to misinterpret possible evidence for models beyond ACDM as being due to CDM particles annihilating with a much weaker cross section than expected.  
  Address [Moline, Angeles] Univ Tecn Lisboa, Inst Super Tecn, CFTP, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: maria.moline@ist.utl.pt;  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000389859100053 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2900  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva